Skip to main content
Log in

Surface tension of different sized single-component droplets, according to macroscopic data obtained using the lattice gas model and the critical droplet size during phase formation

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Size dependences of the surface tension of spherical single-component droplets are calculated using equations of the lattice gas model for 19 compounds. Parameters of the model are found from experimental data on the surface tension of these compounds for a macroscopic planar surface. The chosen low-molecular compounds satisfy the law of corresponding states. To improve agreement with the experimental data, Lennard-Jones potential parameters are varied within 10% deviations. The surface tensions of different sized equilibrium droplets are calculated at elevated and lowered temperatures. It is found that the surface tension of droplets grows monotonically as the droplet size increases from zero to its bulk value. The droplet size R 0 corresponding to zero surface tension corresponds to the critical size of the emergence of a new phase. The critical droplet sizes in the new phase of the considered compounds are estimated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed. (Wiley, New York, 1975).

    Google Scholar 

  2. Kh. B. Khokonov, Surface Phenomena in Melts and Solid Phases Formed from Them (Shtiintsa, Chisinau, 1974), p. 190 [in Russian].

    Google Scholar 

  3. V. I. Nizhenko and A. I. Floka, Surface Tension of Metals and Alloys (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  4. M. J. Jaycock and G. D. Parfitt, Chemistry of Interfaces (Wiley, New York, 1981).

    Google Scholar 

  5. P. C. Reist, Introduction to Aerosol Science (MacMilllan, New York, 1984).

    Google Scholar 

  6. M. Volmer, Kinetik der Phasenbildung (Drezden, Leipzig, 1939).

    Google Scholar 

  7. Ya. I. Frenkel’, Kinetic Theory of Liquids (Moscow, Akad. Nauk SSSR, 1945).

    Google Scholar 

  8. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].

    Google Scholar 

  9. F. P. Buff and J. G. Kirkwood, J. Chem. Phys. 18, 991 (1950).

    Article  CAS  Google Scholar 

  10. F. F. Abraham, Homogeneous Nucleation Theory. The Pretransition Theory of Vapor Condensation (Academic, New York, 1974).

    Google Scholar 

  11. A. A. Lushnikov and A. G. Sutugin, Russ. Chem. Rev. 45, 197 (1976).

    Article  Google Scholar 

  12. S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids (Springer, Berlin, 1960).

    Google Scholar 

  13. J.S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982).

    Google Scholar 

  14. C. A. Croxton, Liquid State Physics. A Statistical Mechanical Introduction (Cambridge Univ. Press, Cambridge, 1974).

    Book  Google Scholar 

  15. M. Iwamatsu, J. Phys.: Condens. Matter 6, L173 (1994).

    CAS  Google Scholar 

  16. V. G. Baidakov and G. Sh. Boltachev, Zh. Fiz. Khim. 69, 515 (1995).

    CAS  Google Scholar 

  17. M. P. Moody and P. Attard, J. Chem. Phys. 117, 6705 (2002).

    Article  CAS  Google Scholar 

  18. S. He and P. Attard, Phys. Chem. Chem. Phys. 7, 2928 (2005).

    Article  CAS  Google Scholar 

  19. D. W. Oxtoby and R. Evans, J. Chem. Phys. 89, 7521 (1988).

    Article  CAS  Google Scholar 

  20. T. V. Bykov and A. K. Shchekin, Inorg. Mater. 35, 641 (1999).

    Google Scholar 

  21. T. V. Bykov and A. K. Shchekin, Colloid. J. 61, 144 (1999).

    CAS  Google Scholar 

  22. T. V. Bykov and X. C. Zeng, J. Chem. Phys. 111, 3705 (1999).

    Article  CAS  Google Scholar 

  23. T. V. Bykov and X. C. Zeng, J. Chem. Phys. 111, 10602 (1999).

    Article  CAS  Google Scholar 

  24. S. M. Thompson, K. E. Gubbins, J. P. R. Walton, et al., J. Chem. Phys. 81, 530 (1984).

    Article  CAS  Google Scholar 

  25. D. I. Zhukhovitskii, Colloid. J. 65, 440 (2003).

    Article  CAS  Google Scholar 

  26. C. Appert, V. Pot, and S. Zaleski, Fields Inst. Commun. 6, 1 (1996).

    Google Scholar 

  27. K. Ebihara and T. Watanabe, Eur. Phys. J. B 18, 319 (2000).

    Article  CAS  Google Scholar 

  28. Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 180 (2010).

    Article  CAS  Google Scholar 

  29. Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 1717 (2010).

    Article  CAS  Google Scholar 

  30. Yu. K. Tovbin, Theory of Physical Chemistry Processes at a Gas–Solid Surface Processes (CRC, Boca Raton, FL, 1991; Nauka, Moscow, 1990).

    Google Scholar 

  31. T. L. Hill, Statistical Mechanics. Principles and Selected Applications (McGraw–Hill, New York, 1956).

    Google Scholar 

  32. Yu. K. Tovbin, Molecular Adsorption Theory in Porous Bodies (Nauka, Moscow, 2012) [in Russian].

    Google Scholar 

  33. I. P. Prigogine, The Molecular Theory of Solutions (Interscience, Amsterdam, New York, 1957).

    Google Scholar 

  34. Yu. K. Tovbin, Kolloidn. Zh. 45, 707 (1983).

    CAS  Google Scholar 

  35. B. N. Okunev, V. A. Kaminskii, and Yu. K. Tovbin, Kolloidn. Zh. 47, 1110 (1985).

    CAS  Google Scholar 

  36. N. A. Smirnova, Molecular Theories of Solutions (Khimiya, Leningrad, 1987) [in Russian].

    Google Scholar 

  37. A. G. Morachevskii, N. A. Smirnova, E. M. Piotrovskaya, et al., Thermodynamics of Liquid-Vapor Equilibrium, Ed. by A. G. Morachevskii (Khimiya, Leningrad, 1989) [in Russian].

    Google Scholar 

  38. J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ, 1986).

    Google Scholar 

  39. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 58, 2193 (2009).

    Article  CAS  Google Scholar 

  40. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 59, 677 (2010).

    Article  CAS  Google Scholar 

  41. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 59, 857 (2010).

    Article  CAS  Google Scholar 

  42. Yu. K. Tovbin, Russ. J. Phys. Chem. A 89, 1971 (2015).

    Article  CAS  Google Scholar 

  43. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  44. R. B. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena (Wiley, New York, 1960).

    Google Scholar 

  45. Modern Crystallography, Vol. 3: Crystal Formation, Ed. by A. A. Chernov, E. I. Givargizov, Kh. S. Bagdasarov, (Nauka, Moscow, 1980) [in Russian].

  46. Tables of Physical Quantities, The Handbook, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].

  47. N. B. Vargaftic, Handbook of Thermophysical Properties of Gases and Liquids (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  48. A. A. Abramzon, Surfactants. Properties and Applications (Khimiya, Leningrad, 1981) [in Russian].

    Google Scholar 

  49. A. M. Kaverin, V. N. Andbaeva, and V. G. Baidakov, Russ. J. Phys. Chem. A 80, 413 (2006).

    Article  CAS  Google Scholar 

  50. V. G. Baidakov and A. M. Kaverin, Russ. J. Phys. Chem. A 78, 1000 (2004).

    Google Scholar 

  51. A. N. Babichev, Physical Values, The Handbook (Energiya, Moscow, 1991), p. 335 [in Russian].

    Google Scholar 

  52. G. A. Mel’nikov, Uch. Zap.: El. Zh. Kursk. Univ. 21 (1), 1 (2012).

    Google Scholar 

  53. V. G. Baidakov, A. M. Kaverin, and V. N. Andbaeva, Fluid Phase Equilib. 270, 116 (2008).

    Article  CAS  Google Scholar 

  54. B. D. Summ, Vestn. Mosk. Univ., Ser. Khim. 40, 400 (1999).

    CAS  Google Scholar 

  55. D. I. Zhukhovitskii, Zh. Fiz. Khim. 67, 1962 (1993).

    Google Scholar 

  56. Yu. K. Tovbin, Russ. J. Phys. Chem. A 89, 547 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.K. Tovbin, E.S. Zaitseva, A.B. Rabinovich, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 10, pp. 1730–1739.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K., Zaitseva, E.S. & Rabinovich, A.B. Surface tension of different sized single-component droplets, according to macroscopic data obtained using the lattice gas model and the critical droplet size during phase formation. Russ. J. Phys. Chem. 91, 1957–1965 (2017). https://doi.org/10.1134/S0036024417100399

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417100399

Keywords

Navigation