Skip to main content
Log in

High-Efficiency Selective Solar Absorber from Nanostructured Carbonized Plant Raw Material

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The results of investigation into the absorptivity of carbonized rice-husk plant material with regard to solar radiation have been given. It has been shown that an absorber based on leached carbonized rice husk has higher solar absorptivity than an absorber based on carbonized apricot pits with an Apricus coating and an absorber based on a commercial Chinese-made coating. The results of investigation into the physical and chemical properties of carbonized rice husk have been presented. It has been shown that the carbon content in the initial unleached rice husk powder is 82.3%, and after leaching, the percentage of carbon rises up to 93.3%. Based on the results of a BET (Brunauer–Emmet–Teller) analysis, it has been established that leached rice husk has a more developed specific surface (447–641 m2/g) and a higher specific volume of pores (0.27–0.392 cm2/g) than unleached rice husk (127–160 m2/g and 0.054–0.127 cm2/g respectively). The advantage of the considered plant-based carbon materials compared to the exiting coatings lies in their porous structure. Cavities are known to be a model of a blackbody, which is a decisive factor in using a material as an absorber, and, simultaneously, a porous structure has a heat-insulating property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tian and C. Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, 104, 538−553 (2013).

    Article  Google Scholar 

  2. O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, Tailoring high-temperature radiation and the resurrection of the incandescent source, Nat. Nanotechnol., 11, 320−324 (2016).

    Article  Google Scholar 

  3. J. B. Chou, Y. X. Yeng, Y. E. Lee A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljacic, N. X. Fang, E. N. Wang, and S. G. Kim, Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals, Adv. Mater., 26, 8041−8045 (2014).

    Article  Google Scholar 

  4. N. Selvakumar and H. C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications, Sol. Energy Mater. Sol. Cells, 98, 1−23 (2012).

    Article  Google Scholar 

  5. D. Katzen, E. Levy, and Y. Mastai, Thin films of silica–carbon nanocomposites for selective solar absorbers, Appl. Surf. Sci., 248 (1), 514–517 (2005).

    Article  Google Scholar 

  6. S. K. Kumar, S. Murugesan, S. Suresh, and S. P. Raj, Nanostructured CuO thin films prepared through sputtering for solar selective absorbers, J. Sol. Energy, 2013, ID 147270 (2013).

    Google Scholar 

  7. A. Amri, Z. T. Jiang, T. Pryor, C.-Y. Yin, and S. Djordjevic, Developments in the synthesis of flat plate solar selective absorber materials via sol–gel methods: A review, Renew. Sustain. Energy Rev., 36, 316–328 (2014).

    Article  Google Scholar 

  8. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Optical properties of single-wall carbon nanotubes, Synth. Met., 103, 2555−2558 (1999).

    Article  Google Scholar 

  9. L. A. Falkovsky, Optical properties of graphene, J. Phys. Conf. Ser., 129, 1200−1204 (2008).

    Article  Google Scholar 

  10. A. E. Aliev, M. H. Lima, E. M. Silverman, and R. H. Baughman, Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes, Nanotechnology, 21, 03570−03579 (2010).

    Article  Google Scholar 

  11. Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, and M. Chen, Multifunctional porous graphene for high-efficiency steam generation by heat localization, Adv. Mater., 27, 4302−4307 (2015).

    Article  Google Scholar 

  12. J. Bernholc, D. Brenner, M. B. Nardelli, V. Meunier, and C. Roland, Mechanical and electrical properties of nanotubes, Annu. Rev. Mater. Res., 32, 347−375 (2002).

    Article  Google Scholar 

  13. M. Vakili, S. M. Hosseinalipour, S. Delfani, S. Khosrojerdi, and M. Karami, Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems, J. Sol. Energy, 131, 119−130 (2016).

    Article  Google Scholar 

  14. J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, High-performance graphene-based transparent flexible heaters, Nano Lett., 11, 5154−5158 (2011).

    Article  Google Scholar 

  15. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes, Proc. Natl Acad. Sci. USA, 106, 6044–6047 (2009).

    Article  Google Scholar 

  16. C. Srinivasan, The blackest black material from carbon nanotubes, Curr. Sci., 94, 974–975 (2008).

    Google Scholar 

  17. M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, and R. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets, Science, 309, 1215–1219 (2005).

    Article  Google Scholar 

  18. Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, Experimental observation of an extremely dark material made by a low-density nanotube array, Nano Lett., 8, 446−451 (2008).

    Article  Google Scholar 

  19. Z. Chen and T. Bostrom, Electrophoretically deposited carbon nanotube spectrally selective solar absorbers, Sol. Energy Mater. Sol. Cells, 144, 678−683 (2016).

    Article  Google Scholar 

  20. A. F. Fonseca, R. H. Baughman, and A. A. Zakhidov, Structural model for dry-drawing of sheets and yarns from carbon nanotube forests, ACS Nano, 5 (2), 985–993 (2011).

    Article  Google Scholar 

  21. A. E. Aliev, C. Guthy, M. Zhang, Sh. Fang, A. A. Zakhidov, J. E. Fischer, and R. H. Baughman, Thermal transport in MWCNT sheets and yarns, Carbon, 45, 2880–2888 (2007).

    Article  Google Scholar 

  22. P. M. Martinez, V. A. Pozdin, A. Papadimitratos, W. Holmes, F. Hassanipour, and A. A. Zakhidov, Dual use carbon nanotube selective coatings in evacuated tube solar collectors, Carbon, 119, 133−141 (2017).

    Article  Google Scholar 

  23. N. G. Prikhodko, G. T. Smagulova, N. B. Rakhymzhan, S. Kim, B. T. Lesbaev, M. Nazhipkyzy, and Z. A. Mansurov, Comparative investigation of the efficiency of absorption of solar energy by carbon composite materials, J. Eng. Phys. Thermophys., 90, No. 1, 117−125 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Prikhod’ko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 4, pp. 1056–1065, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prikhod’ko, N.G., Smagulova, G.T., Nazhipkyzy, M. et al. High-Efficiency Selective Solar Absorber from Nanostructured Carbonized Plant Raw Material. J Eng Phys Thermophy 93, 1020–1029 (2020). https://doi.org/10.1007/s10891-020-02203-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02203-7

Keywords

Navigation