Skip to main content

Advertisement

Log in

Physicochemical and optical properties of a sustainable and low cost solar absorber coating based on activated carbon from coconut shell

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Solar selective coatings (SACs) are materials deposited on solar receivers to improve the thermal performance in concentrating solar power (CSP) technologies, by increasing the absorption of solar radiation; however, the manufacture of commercial SACs involves polluting and toxic raw materials and complex processes, which make their production expensive. This study presents the use of activated carbon from coconut shell feedstock (CCSF), as photothermal material, in the formulation of a sustainable and low cost SAC, in conjunction with an acrylic resin as binder. The CCSF was characterized by FTIR, XRD and TGA; optical properties such as diffuse reflectance in UV–Vis–NIR interval were also determined. The adhesion properties of the SAC on aluminum substrates were determined according to ASTM D3359. The physicochemical characterization revealed the presence of amorphous carbon; whereas a diffuse reflectance interval of 5.24–8.96% was found for the SAC, and the highest rating adhesion was obtained.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data are available on reasonable request.

References

  1. C. Atkinson, C.L. Sansom, H.J. Almond, C.P. Shaw, Renew Sustain Energy Rev. (2015). https://doi.org/10.1016/j.rser.2015.01.015

    Article  Google Scholar 

  2. B. Carlsson, G. Jorgensen, M. Köhl, in Performance and Durability Assessment, ed. By M. Köhl, B. Carlsson, G. Jorgensen, A.W. Czanderna (Elsevier, Amsterdam, 2004) p. 3–16

  3. M. Joly, Y. Antonetti, M. Python, M. Gonzalez, T. Gascou, J.L. Scartezzini, A. Schuler, Sol Energy. (2013). https://doi.org/10.1016/j.solener.2013.05.009

    Article  Google Scholar 

  4. J. O. Moreno Soto, Síntesis y caracterización de recubrimientos absorbentes selectivos para calentadores solares. (Universidad Tecnológica de Pereira, 2016), http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/6941/62147M843.pdf?sequence=1&isAllowed=y. Accessed 15 July 2022

  5. D. Yu, L. Wang, M. Wu, J. Taiwan Inst. Chem. Eng. (2018). https://doi.org/10.1016/j.jtice.2018.08.038

    Article  Google Scholar 

  6. S. Kaipannan, S. Nagarajan, K. Manickavasakam, M. Sathish, Chem. Select (2018). https://doi.org/10.1002/slct.201701857

    Article  Google Scholar 

  7. M. Zhu, J. Yu, C. Ma, C. Zhang, D. Wu, H. Zhu, Sol Energy Mater. Sol Cell. (2019). https://doi.org/10.1016/j.solmat.2018.11.015

    Article  Google Scholar 

  8. S.K. Hota, G. Diaz, MRS Adv. (2020). https://doi.org/10.1557/adv.2020.267

    Article  Google Scholar 

  9. A. I. Bakti, P. L. Gareso, J. I. Pendidik, F. Al-Biruni (2018) https://doi.org/10.24042/jipfalbiruni.v7i1.2459

  10. N.G. González-Canché, J.G. Carrillo, B. Escobar-Morales, I. Salgado-Tránsito, N. Pacheco, S.C. Pech-Cohuo, M.I. Peña-Cruz, Materials (2021). https://doi.org/10.3390/ma14164756

    Article  Google Scholar 

  11. A.I. Oliva, R.D. Maldonado, E.A. Díaz, A.I. Montalvo, IOP Conf Ser: Mater Sci Eng. (2013). https://doi.org/10.1088/1757-899X/45/1/012019

    Article  Google Scholar 

  12. L.B. López-Sosa, M. González-Avilés, L.M. Hernández-Ramírez, A. Medina-Flores, T. López-Luke, M. Bravo-Sánchez, J. Zárate-Medina, Sol Energy. (2020). https://doi.org/10.1016/j.solener.2020.03.102

    Article  Google Scholar 

  13. L. Martínez-Manuel, N.G. González-Canché, L.B. López-Sosa, J.G. Carrillo, W. Wang, C.A. Pineda-Arellano, F. Cervantes, J.J. Alvarado Gil, M.I. Peña Cruz, Sol Energy. (2022) https://doi.org/10.1016/j.solener.2022.05.015

  14. Al-Be, PIROMARK 2500 (1093 °C–2000 °F). (Revestimientos especiales), https://lacoalbe.es/revestimientos-especiales/2636-pyromark-2500-1093c-2000f.html. Accessed 30 Oct 2022

  15. Solec, Solkote Technical Specifications. (Solar Energy Corporation), https://www.solec.org/solkote/solkote-technical-specifications/. Accessed 30 Oct 2022

  16. Dampney Protective Coatings, Thurmalox 250 Selective Black Solar Collector Coating. (Bulletin 250), http://www.dampney.com/Portals/1/PropertyAgent/456/Files/2/Thurmalox250-SolarCoating.pdf. Accessed 30 Oct 2022

  17. Comex, Aerocomex Alta Temperatura. (Datasheet Revision No.3, 2015), https://www.comex.com.mx/getattachment/94344e52-eb00-47ca-bae9-b688a25dbae2/.aspx/. Accessed 30 Oct 2022

  18. K. Niaz, H. Bahadar, F. Maqbool, M. Abdollahi, EXCLI (2015) https://doi.org/10.17179/excli2015-623

  19. Secretaría de Agricultura y Desarrollo Rural, Producción de copra y coco en México. (Gobierno de México, 2022), https://www.gob.mx/agricultura/es/articulos/produccion-de-copra-y-coco-en-mexico?idiom=es#:~:text=La%20producci%C3%B3n%20nacional%20fue%20de,este%20producto%20todo%20el%20a%C3%B1o. Accessed 25 Oct 2022

  20. The manufacturer, En México le sacan nuevas utilidades a los desechos del coco. (The manufacturer, 2015) https://www.themanufacturer.com/2015/10/16/desechos-del-coco/. Accessed 25 Oct 2020

  21. N.G. Gonzalez-Canche, E.A. Flores-Johnson, P. Cortes, J.G. Carrillo, Int. J. Adhes. Adhes. (2018). https://doi.org/10.1016/j.ijadhadh.2018.01.003

    Article  Google Scholar 

  22. American Society for Testing And Materials. (1998) https://doi.org/10.1520/D3359-17

  23. E. Köseoʇlu, C. Akmil-Başar, Adv Powder Technol. (2015). https://doi.org/10.1016/j.apt.2015.02.006

    Article  Google Scholar 

  24. C.W. Purnomo, E.P. Kesuma, I. Perdana, M. Aziz, Waste Manag. (2018). https://doi.org/10.1016/j.wasman.2018.08.017

    Article  Google Scholar 

  25. J. Coates, Encycl. Anal. Chem. (2015). https://doi.org/10.1002/9780470027318.a5606

    Article  Google Scholar 

  26. Q. Yong, C. Liang, Polymer (2019). https://doi.org/10.3390/polym11020322

    Article  Google Scholar 

  27. A. Cogulet, P. Blanchet, V. Landry, Coat. (2019). https://doi.org/10.3390/COATINGS9020121

    Article  Google Scholar 

  28. M. Hashem, R. Mohammed, E. Tarek, E. Mohammed, U. Ahmad, A. Mansour, S.G. Ansari, Sci. Adv. Mater. (2017) https://doi.org/10.1166/sam.2017.3087

  29. D. Das, D.P. Samal, B.C. Melkap, J. Chem. Eng. Process. Technol. (2015). https://doi.org/10.4172/2157-7048.1000248

    Article  Google Scholar 

  30. J. Abdulsalam, J. Mulopo, B. Oboirien, S. Bada, R. Falcon, Int. J. Coal Sci. Technol. (2019). https://doi.org/10.1007/s40789-019-0262-5

    Article  Google Scholar 

  31. R. Rajamma, R. J. Ball, L. A. C. Tarelho, G. C. Allen, J. A. Labrincha, V. M. Ferreira, J. Hazard Mater. (2009) https://doi.org/10.1016/j.jhazmat.2009.07.109

  32. M. M. J. Treacy, J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, 4th edn. (Elsevier, Amsterdam, 2001), pp. 14–15

  33. B. Boubault, O. Claudet, G. Faugeroux, J. Olalde, J. Serra, Sol Energy. (2012). https://doi.org/10.1016/j.solener.2012.08.007

    Article  Google Scholar 

  34. H. Yang, K. Sheng, Int. Sch. Res. Not. (2012). https://doi.org/10.5402/2012/712837

    Article  Google Scholar 

  35. M. Kurzböck, G.M. Wallner, R.W. Lang, Energy Procedia. (2012). https://doi.org/10.1016/j.egypro.2012.11.052

    Article  Google Scholar 

  36. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes (Wiley, New Jersey, 2013), p.177

    Book  Google Scholar 

  37. F. Sallaberry, J. Barriga, A.G. Jalón, F. Goñi, R. Erice, G. Rincón, AIP Conf. Proc. (2020). https://doi.org/10.1063/5.0029158

    Article  Google Scholar 

  38. J. F. Torres, K. Tsuda, Y. Murakami, Y. Guo, S. S. Hosseini, C. A. Asselineau, M. Taheri, K. Drewes, W. Tricoli, J. Lipinski, Energy Environ. Sci. (2022) https://doi.org/10.1039/D1EE03028K

  39. M. Gao, L. Zhu, C.K.N. Peh, G.W.W. Ho, Energy Environ. Sci. (2018). https://doi.org/10.1039/C8EE01146J

    Article  Google Scholar 

  40. D.L. Domtau, J. Simiyu, E.O. Arrieta, G.M. Asiimwe, J.M. Mwabora, Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/7515802

    Article  Google Scholar 

Download references

Acknowledgments

Paola Martínez-Mireles thanks to CONACYT for the Grant (2021-000001-01NACF). Nancy González-Canché acknowledges to CONACYT, International Development Research Center, IDRC Canada and Centro de Investigaciones y Estudios Superiores en Antropología Social, CIESAS for the postdoctoral fellowship granted and the funding project 60228, through the call “Estancias Posdoctorales para Mujeres Mexicanas Indígenas en Ciencia, Tecnología, Ingeniería y Matemáticas 2019-1. The authors also would like to thank the technical support from MSc Martin Baas with the FTIR and DRX spectroscopy and MSc Christian Albor with the diffuse reflectance measurements. Mónica Noriega is also acknowledged for their technical support in the realization of this work.

Funding

Funding were provided by Consejo Nacional de Ciencia y Tecnología (CONACYT) México (Grant No.: 2021-000001-01NACF), International Development Research Center, IDRC Canadá (Grant No.: 60228-CEAR 2019-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Guadalupe González-Canché.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Mireles, P.E., Peña-Cruz, M.I., Escobar-Morales, B. et al. Physicochemical and optical properties of a sustainable and low cost solar absorber coating based on activated carbon from coconut shell. MRS Advances 7, 991–996 (2022). https://doi.org/10.1557/s43580-022-00438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00438-5

Navigation