Skip to main content
Log in

A New Rapid Method of Determining the Thermal Diffusivity of Materials and Finished Articles

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A new nonstationary nondestructive rapid method of determining the thermal diffusivity of materials and finished articles has been suggested and tested experimentally without cutting out samples from them and preparation of the latter. The method is based on using an infrared imager to video record the infrared radiation of the surface originating as a result of its local stepwise heating by, say, a focused laser beam. Subsequent computer processing of the patterns of the nonstationary thermal field by the developed models and algorithms makes it possible to determine the thermal diffusivity of a material or an article in the case of one-sided access to them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Hammerschmidt, J. Hameury, R. Strnad, E. Turzó-Andras, and J. Wu, Critical review of industrial techniques for thermal-conductivity measurements of thermal insulation materials, Int. J. Thermophys., 36, 1530–1544 (2015).

    Article  Google Scholar 

  2. V. P. Vavilov and D. D. Burleigh, Review of pulsed thermal NDT: Physical principles, theory and data processing, NDT and E Int., 73, 28−52 (2015).

    Article  Google Scholar 

  3. L. A. Skvortsov, Foundations of Photothermal Radiometry and Laser Thermography [in Russian], Tekhnosfera, Moscow (2017).

  4. Y. Zhao, S. Addepalli, A. Sirikham, and R. Roy, A confidence map based damage assessment approach using pulsed thermographic inspection, NDT and E Int., 93, 86–97 (2018).

    Article  Google Scholar 

  5. D. P. Almond, S. L. Angioni, and S. G. Pickering, Long pulse excitation thermographic non-destructive evaluation, NDT and E Int., 87, 7−14 (2017).

    Article  Google Scholar 

  6. Yu. I. Golovin, A. I. Turin, D. Yu. Golovin, and A. A. Samodurov, Electric thermal inspection of metal sheets, Tech. Phys. Lett., 43, No. 10, 899−901 (2017).

    Article  Google Scholar 

  7. Yu. I. Golovin, A. I. Turin, D. Yu. Golovin, and A. A. Samodurov, Nonstationary infrared testing of coatings on exterior and interior surfaces of metal shells, Tech. Phys. Lett., 43, No. 12, 1128−1131 (2017).

    Article  Google Scholar 

  8. Yu. I. Golovin, A. I. Turin, D. Yu. Golovin, and A. A. Samodurov, New ways of detecting cracks, delaminations, and other defects in materials and objects via high frame-rate thermal imaging, Bull. Russ. Acad. Sci.: Phys., 82, No. 9, 1193–1202 (2018).

  9. O. Breitenstein and M. Langenkamp, Lock-in Thermography: Basics and Use for Functional Diagnostics of Electronic Components, Springer Science & Business Media, Berlin, Heidelberg (2003).

    Book  Google Scholar 

  10. H. Huan, A. Mandelis, L. Liu, and A. Melnikov, Local-stress-induced thermal conductivity anisotropy analysis using non-destructive photo-thermo-mechanical lock-in thermography (PTM-LIT) imaging, NDT and E Int., 91, 79–87 (2017).

    Article  Google Scholar 

  11. A. Mandelis and Y. Riopel, Laser infrared photothermal radiometry of electronic solids: Principles and applications to industrial semiconductor Si wafers, J. Vac. Sci. Technol. A, 18, No. 2, 705–708 (2000).

    Article  Google Scholar 

  12. L. Wang, M. Gandorfer, T. Selvam, and W. Schwieger, Determination of faujasite-type zeolite thermal conductivity from measurements on porous composites by laser flash method, Mater. Lett., 221, 322–325 (2018).

    Article  Google Scholar 

  13. L. Vozar and W. Hohenauer, Flash method of measuring the thermal diffusivity, High Temp. — High Press., 35/36, 253−264 (2003/2004).

  14. Yu. I. Golovin, A. I. Turin, D. Yu. Golovin, and A. A. Samodurov, New methods of thermographic control using multiscale analysis of non-stationary thermal fields, Ind. Lab. Diagn. Mater., 84, No. 6, 23−33 (2018).

    Article  Google Scholar 

  15. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, Flash method of determining thermal diffusivity, heat capacity and thermal conductivity, J. Appl. Phys., 32, 1679−1684 (1961).

    Article  Google Scholar 

  16. Thermal diffusivity and thermal conductivity analyzer LFA 427; http://granat-e.ru/netzsch_lfa-427.html.

  17. Thermal diffusivity analyzers Discovery Flash; https://www.intertech-corp.ru/aboutproduct.asp?gr=17&subgr=88&prid=228.

  18. Devices for determining thermal diffusivity and thermal conductivity by the method of laser flash; https://www.netzschthermal-analysis.com/ru/landing-pages/opredelenie-temperaturoprovodnosti-i-teploprovodnosti.

  19. ISO 22007-4:2017. Plastics — Determination of Thermal Conductivity and Thermal Diffusivity. Part 4: Laser flash method.

  20. ISO 18755:2005. Fine Ceramics (advanced ceramics, advanced technical ceramics) — Determination of Thermal Diffusivity of Monolithic Ceramics by Laser Flash Method.

  21. ASTM E1461-13. Standard Test Method for Thermal Diffusivity by the Flash Method.

  22. S. Bagavathiappan, B. B. Lahiri, T. Saravanan, John Philip, and T. Jayakumar, Infrared thermography for condition monitoring — A review, Infrared Phys. Technol., 60, 35–55 (2013).

  23. H. C. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, USA (1959).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Golovin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 1, pp. 240–247, January–February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, D.Y., Divin, A.G., Samodurov, A.A. et al. A New Rapid Method of Determining the Thermal Diffusivity of Materials and Finished Articles. J Eng Phys Thermophy 93, 234–240 (2020). https://doi.org/10.1007/s10891-020-02113-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02113-8

Keywords

Navigation