Skip to main content
Log in

Mathematical Model of Multiphase Nonisothermal Filtration in Deformable Porous Media with a Simultaneous Chemical Reaction

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The authors have developed a mathematical model of multiphase nonisothermal filtration with chemical reactions and phase transitions in deformable porous media. A modified Biot approach was used to describe filtration through a deformable porous medium. Equations for the stress–strain state have been formulated in terms of displacements, and the elastic rheology of a porous skeleton in nonisothermal form was used in the model. The dependence of the permeability on porosity has been written in the form of a Kozeny–Carman equation. A test problem of combustion in a low-permeability sample of a bituminous reservoir has been solved. Results of the work can be used to numerically substantiate experiments on the technology of interbedding combustion in low-permeability beds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kelkar, K. C. Lewis, S. Karra, et al., A simulator for modeling coupled thermo-hydro-mechanical processes in subsurface geological media, Int. J. Rock Mech. Min. Sci., 70, 569−580 (2014).

    Article  Google Scholar 

  2. N. Watanabe, W. Wang, C. McDermott, T. Taniguchi, and O. Kolditz, Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media, Comput. Mech., 45, No. 4, 263−280 (2010).

    Article  Google Scholar 

  3. H. Y. Wang, A Numerical Study of Thermal-Hydraulic-Mechanical (THM) Simulation with the Application of Thermal Recovery in Fractured Shale Gas Reservoirs (2017); arXiv preprint arXiv:1711.02579.

  4. A. A. Abed and W. T. Sołowski, A study on how to couple thermo-hydro-mechanical behavior of unsaturated soils: Physical equations, numerical implementation and examples, Comput. Geotech., 92, 132−155 (2017).

    Article  Google Scholar 

  5. Y. Chen, C. Zhou, and L. Jing, Modeling coupled THM processes of geological porous media with multiphase flow: Theory and validation against laboratory and field scale experiments, Comput. Geotech., 36, No. 8, 1308−1329 (2009).

    Article  Google Scholar 

  6. F. Tong, L. Jing, and R. W. Zimmerman, A fully coupled thermo-hydro-mechanical model for simulating multiphase flow, deformation and heat transfer in buffer material and rock masses, Int. J. Rock Mech. Min. Sci., 47, No. 2, 205−217 (2010).

    Article  Google Scholar 

  7. X. Zhou and A. Ghassemi, Finite element analysis of coupled chemo-poro-thermo-mechanical effects around a wellbore in swelling shale, Int. J. Rock Mech. Min. Sci., 46, No. 4, 769−778 (2009).

    Article  Google Scholar 

  8. S. Yin, B. F. Towler, and L. Rothenburg, Fully coupled THMC modeling of wellbore stability with thermal and solute convection considered, Transp. Porous Media, 84, No. 3, 773−798 (2010).

    Article  MathSciNet  Google Scholar 

  9. S. Olivella, J. Carrera, A. Gens, and E. E. Alonso, Nonisothermal multiphase flow of brine and gas through saline media, Transp. Porous Media, 15, No. 3, 271−293 (1994).

    Article  Google Scholar 

  10. S. Yin, M. B. Dusseault, and L. Rothenburg, Coupled THMC modeling of CO2 injection by finite element methods, J. Pet. Sci. Eng., 80, No. 1, 53−60 (2011).

    Article  Google Scholar 

  11. W. T. Pfeiffer, B. Graupner, and S. Bauer, The coupled non-isothermal, multiphase-multicomponent flow and reactive transport simulator OpenGeoSys–ECLIPSE for porous media gas storage, Environ. Earth Sci., 75, No. 20, 1347 (2016).

  12. B. Flemisch, M. Darcis, K. Erbertseder, et al., DuMux: DUNE for multi-{phase, component, scale, physics, …} flow and transport in porous media, Adv. Water Res., 34, No. 9, 1102−1112 (2011).

    Article  Google Scholar 

  13. T. Xu, E. Sonnenthal, and K. Pruess, TOUGHREACT — A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration, Comput. Geosci., 32, No. 2, 145−165 (2006).

    Article  Google Scholar 

  14. J. Kim, E. Sonnenthal, and J. Rutqvist, A sequential implicit algorithm of chemo-thermo-poro-mechanics for fractured geothermal reservoirs, Comput. Geosci., 76, 59−71 (2015).

    Article  Google Scholar 

  15. J. Taron, D. Elsworth, and K. B. Min, Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media, Int. J. Rock Mech. Min. Sci., 46, No. 5, 842−854 (2009).

    Article  Google Scholar 

  16. J. Taron and D. Elsworth, Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs, Int. J. Rock Mech. Min. Sci., 46, No. 5, 855−864 (2009).

    Article  Google Scholar 

  17. L. Zheng, J. Rutqvist, J. Birkholzer, and Hui-Hai Lui, On the impact of temperatures up to 200°C in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modeling, Eng. Geol., 197, 278−295 (2015).

  18. M. G. Khramchenkov and É. M. Khramchenkov, Mathematical modeling of multiphase filtration in porous media with a chemically active skeleton, J. Eng. Phys. Thermophys., 91, No. 1, 212−219 (2018).

    Article  Google Scholar 

  19. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, University Press, Cambridge (2013).

    MATH  Google Scholar 

  20. V. N. Nikolaevskii, Geomechanics and Fluid Dynamics [in Russian], Nedra, Moscow (1996).

  21. Jacques Burger, Pierre Sourieau, and Michel Combarnous, Thermal Methods of Oil Recovery [Russian translation], Nedra, Moscow (1989).

  22. I. A. Koznacheev and K. V. Dobrego, A contribution to the problem of initiation of a combustion source in an oil-saturated bed, J. Eng. Phys. Thermophys., 86, No. 6, 1385−1394 (2013).

    Article  Google Scholar 

  23. É. A. Bondarev, K. K. Argunova, and I. I. Rozhin, Plane-parallel nonisothermal filtration of a gas: the role of heat transfer, J. Eng. Phys. Thermophys., 82, No. 6, 1073−1079 (2009).

    Article  Google Scholar 

  24. R. H. Pletcher, J. C. Tannehill, and D. Anderson, Computational Fluid Mechanics and Heat Transfer, CRC Press (2016).

  25. P. L. Roe, Characteristic-based schemes for the Euler equations, Annu. Rev. Fluid Mech., 18, No. 1, 337−365 (1986).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to É. M. Khramchenkov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 1, pp. 197–205, January–February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramchenkov, É.M., Khramchenkov, M.G. Mathematical Model of Multiphase Nonisothermal Filtration in Deformable Porous Media with a Simultaneous Chemical Reaction. J Eng Phys Thermophy 93, 191–200 (2020). https://doi.org/10.1007/s10891-020-02108-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02108-5

Keywords

Navigation