Skip to main content
Log in

Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper we present an uncertainty analysis of thermo-hydro-mechanical (THM) coupled processes in a typical geothermal reservoir in crystalline rock. Fracture and matrix are treated conceptually as an equivalent porous medium, and the model is applied to available data from the Urach Spa and Falkenberg sites (Germany). The finite element method (FEM) is used for the numerical analysis of fully coupled THM processes, including thermal water flow, advective–diffusive heat transport, and thermoelasticity. Non-linearity in system behavior is introduced via temperature and pressure dependent fluid properties. Reservoir parameters are considered as spatially random variables and their realizations are generated using conditional Gaussian simulation. The related Monte-Carlo analysis of the coupled THM problem is computationally very expensive. To enhance computational efficiency, the parallel FEM based on domain decomposition technology using message passing interface (MPI) is utilized to conduct the numerous simulations. In the numerical analysis we considered two reservoir modes: undisturbed and stimulated. The uncertainty analysis we apply captures both the effects of heterogeneity and hydraulic stimulation near the injection borehole. The results show the influence of parameter ranges on reservoir evolution during long-term heat extraction, taking into account fully coupled thermo-hydro-mechanical processes. We found that the most significant factors in the analysis are permeability and heat capacity. The study demonstrates the importance of taking parameter uncertainties into account for geothermal reservoir evaluation in order to assess the viability of numerical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Range of a variogram model (m)

B :

Strain displacement matrix

C :

Sill in a variogram model (–)

\({{\mathbb C}}\) :

Fourth-order material tensor

c p :

Specific heat capacity of porous medium (J/kg K)

\({c_p^l}\) :

Specific heat capacity of liquid (J/kg K)

\({c_p^s}\) :

Specific heat capacity of solid (J/kg K)

D :

Matrix form of constitutive tensor \({{\mathbb C}}\)

E :

Young’s modulus (Pa)

f :

Right-hand-side (RHS) term

G :

Shear modulus (Pa)

g :

Acceleration of gravity (m/s2)

g :

Vector form of g

h :

Lag distance in variogram model (m)

I :

Identity tensor

k :

Intrinsic permeability (m2)

K :

Laplace matrix

L :

Differential operator

m :

Specific unit tensor

M :

Mass matrix

n :

Porosity (–)

n :

Normal vector

N :

Shape function

p :

Pressure (Pa)

q T :

Heat flux vector (J/m2 s)

Q T :

Heat sources

q f :

Flow flux vector (m3/m2 s)

Q f :

Flow source/sink terms

S s :

Specific storage (Pa−1)

t :

Time (s)

T :

Temperature (K)

u :

Solid displacement vector (m)

v :

Fluid phase velocity (m/s)

α T :

Linear thermal expansion coefficient for the solid (K−1)

δ :

Kronecker delta

ΔT :

Temperature increment (K)

\({{\bf \epsilon}}\) :

Strain tensor

γ :

Semivariogram (–)

Γ:

Domain boundary

λ :

First Lamé constant (Pa)

λ e :

Heat conductivity of porous media (W/m K)

λ l :

Heat conductivity of liquid (W/m K)

λ s :

Heat conductivity of solid (W/m K)

μ :

Dynamic viscosity (Pa s)

ν :

Poisson ratio (–)

ω :

Linear test function

ω :

Quadratic test function

ω T :

Thermal gradient (K/m)

Ω:

The model domain

ρ :

Density of porous medium (kg/m3)

ρ l :

Density of liquid (kg/m3)

ρ s :

Density of solid (kg/m3)

σ :

Total stress tensor (Pa)

σ′:

Effective stress tensor (Pa)

θ :

Relaxation parameter

in:

Value at the injection borehole

out:

Value at the production borehole

T :

Transpose of matrix

0:

Value at the initial condition (t = 0)

H:

Hydraulic process

M:

Mechanical process

n :

Time step index

r :

Reference value

T:

Heat transport process

\({\dot{A}}\) :

dA/dt

 :

Vector of nodal values of the unknown A

A :

Gradient of a scalar

∇ · A :

Divergence of a vector

A :

Gradient of a vector

References

  1. Alonso EE, Alcoverro J, Coste F, Malinsky L, Merrien- Soukatchoff V, Kadiri I, Nowak T, Shao H, Nguyen TS, Selvadurai APS, Armand G, Sobolik SR, Itamura M, Stone CM, Webb SW, Rejeb A, Tijani M, Maouche Z, Kobayashi A, Kurikami H, Ito A, Sugita Y, Chijimatsu M, Borgesson L, Hernelind J, Rutqvist J, Tsang CF, Jussila P (2005) The FEBEX benchmark test: case definition and comparison of modelling approaches. Int J Rock Mech Mining Sci 42(5–6): 611–638

    Article  Google Scholar 

  2. Baisch S, Weidler R, Voeroes R, Tenzer H, Teza D (2004) Improving hydraulic simulation efficiency by means of real time monitoring. In: Horne G (ed) Proceedings of the 29th workshop on geothermal reservoir engineering, Stanford University, pp 209–215

  3. Baria R, Baumgärtner J, Gerard A, Moore P (1992) GPK1—preliminary results obtained during the drilling operations at Soultz. Tech. rep., Core Team, Socomine, Southern International Inc

  4. Baria R, Jung R, Tischner T, Nicholls J, Michelet S, Sanjuan B, Soma N, Asanuma H, Dyer B, Garnish J (2006) Creation of an HDR reservoir at 5000 m depth at the European HDR project. In: Proceedings, 31th workshop on geothermal reservoir engineering. Stanford University, Stanford, California, January 30–February 1, 2006

  5. Birkholzer J, Rutqvist J, Sonnenthal E, Barr D (2008) DECOVALEX—Task D: Long-term permeability changes due to THC and THM processes. Tech. Rep. 2008:43, Swedish Nuclear Power Inspectorate, Stockholm

  6. de Boer R (2005) Trends in continuum mechanics of porous media: theory and applications of transport in porous media. Springer, Heidelberg

    MATH  Google Scholar 

  7. Borja RI, Aydin A (2004) Computational modeling of deformation bands in granular media. I. Geological and mathematical framework. Comput Methods Appl Mech Eng 193(27–29): 2667–2698

    Article  MATH  MathSciNet  Google Scholar 

  8. Borsetto M, Carradori G, Ribacchi R (1981) Coupled seepage, heat transfer and stress analysis with application to geothermal problems. In: Lewis RW, Morgan K, Zienkiewicz OC (eds) Numerical methods in heat transfer. Wiley, Chichester

    Google Scholar 

  9. Bower K, Zyvoloski G (1997) A numerical model for thermo-hydro-mechanical coupling in fractured rock. Int J Rock Mech Mining Sci 34(8): 1201–1211

    Article  Google Scholar 

  10. Bruel D (1995) Modeling heat extraction from forced fluid-flow through stimulated fractured rock masses—evaluation of the Soultz-sous-Forets site potential. Geothermics 24(3): 439–450

    Article  Google Scholar 

  11. Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15: 150

    Google Scholar 

  12. Carman PC (1956) Flow of gases through porous media. Butterworths Scientific Publications, London

    MATH  Google Scholar 

  13. Chilés JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    MATH  Google Scholar 

  14. Clauser C (2003) Numerical simulation of reactive flows in hot aquifers. Springer, Berlin

    Google Scholar 

  15. Coussy O (2004) Poromechanics. John Wiley & Sons, Ltd, New York

    Google Scholar 

  16. Desbarats AJ (1996) Modeling spatial variability using geostatistical simulation. In: Rouhani S, Srivastava RM, Desbarats AJ, Cromer MV, Johnson AI (eds) Geostatistics for environmental and geotechnical applications. American Society for Testing and Materials, Philadelphia

  17. Deutsch CV (2002) Geostatistical reservoir modeling. Oxford University Press, New York

    Google Scholar 

  18. Doughty C, Pruess K (2004) Modeling supercritical carbon dioxide injection in heterogeneous porous media. Vadose Zone J 3: 837–847

    Article  Google Scholar 

  19. Ehlers W, Bluhm J (2002) Porous media: theory, experiments and numerical applications. Springer, Berlin

    MATH  Google Scholar 

  20. Guimaraes LD, Gens A, Olivella S (2007) Coupled thermo-hydro-mechanical and chemical analysis of expansive clay subjected to heating and hydration. Transp Porous Media 66(3): 341–372

    Article  Google Scholar 

  21. Haenel R (ed) (1982) The Urach geothermal project, Swabian Alb, Germany. Schweitzerbartsche Verlagsbuchhandlung

  22. Kiryukhin A, Xu T, Pruess K, Apps J, Slovtsov I (2004) Thermal-hydrodynamic-chemical (THC) modeling based on geothermal field data. Geothermics 33(3): 349–381

    Article  Google Scholar 

  23. Kohl T (1992) Modellsimulation gekoppelter Vorgänge beim Wärmeentzug aus heißem Tiefengestein. Ph.D. thesis, ETH Zürich

  24. Kohl T, Evans KF, Hopkirk RJ, Rybach L (1995) Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs. Geothermics 24(3): 345–359

    Article  Google Scholar 

  25. Kohlmeier M (2006) Coupling of thermal, hydraulic and mechanical processes for geotechnical simulations of partially saturated porous media. Ph.D. thesis, Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Leibniz Universität Hannover

  26. Kolditz O (1995) Modelling flow and heat transfer in fractured rocks: Conceptual model of a 3-D deterministic fracture network. Geothermics 24(3): 451–470

    Article  Google Scholar 

  27. Kolditz O, de Jonge J (2004) Non-isothermal two-phase flow in low-permeable porous media. Comput Mech 33(5): 345–364

    Article  MATH  Google Scholar 

  28. Korsawe J, Starke G, Wang W, Kolditz O (2006) Finite element analysis of poro-elastic consolidation in porous media: mixed and standard approaches. Comput Methods Appl Mech Eng 195(9–12): 1096–1115

    Article  MATH  MathSciNet  Google Scholar 

  29. Kozeny J (1927). Über kapillare Leitung des Wassers im Boden. Akad Wiss Wien 136: 271–306

    Google Scholar 

  30. Kuhn M (2004) Reactive flow modeling of hydrothermal systems. Lecture Notes in Earth Sciences. Springer, Berlin

  31. Lehmann H, Wang K, Clauser C (1998) Parameter identification and uncertainty analysis for heat transfer at the KTB drill site using a 2-D inverse method. Tectonophysics 291(1–4): 179–194

    Article  Google Scholar 

  32. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  33. McDermott C, Kolditz O (2006) Geomechanical model for fracture deformation under hydraulic, mechanical and thermal loads. Hydrogeol J 14(4): 485–498

    Article  Google Scholar 

  34. McDermott CI, Randriamanjatosoa AR, Tenzer H, Kolditz O (2006) Simulation of heat extraction from crystalline rocks: The influence of coupled processes on differential reservoir cooling. Geothermics 35(3): 321–344

    Article  Google Scholar 

  35. McDermott CI, Walsh R, Mettier R, Kosakowski G, Kolditz O (2009) Hybrid analytical and finite element numerical modeling of mass and heat transport in fractured rocks with matrix diffusion. Comput Geosci 13(3): 349–361

    Article  MATH  Google Scholar 

  36. Noorishad J, Tsang C, Witherspoon P (1984) Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach. J Geophys Res 89: 10365–10373

    Article  Google Scholar 

  37. O’Sullivan MJ, Pruess K, Lippmann MJ (2001) State of the art of geothermal reservoir simulation. Geothermics 30(4): 395–429

    Article  Google Scholar 

  38. Pape H, Clauser C, Iffland J (1999) Permeability prediction based on fractal pore-space geometry. Geophysics 64(5): 1447–1460

    Article  Google Scholar 

  39. Parker RH (1989) Hot dry rock geothermal energy—phase 2B Final Report of the Camborne School of mines project. Pergamon Press, New York

    Google Scholar 

  40. Pebesma EJ, Wesseling CG (1998) Gstat: a program for geostatistical modelling, prediction and simulation. Comput Geosci 24(1): 17–31

    Article  Google Scholar 

  41. Popov Y, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure Appl Geophys 160(5–6): 1137–1161

    Article  Google Scholar 

  42. Rautman CA, Treadway AH (1991) Geologic uncertainty in a regulatory environment—an example from the potential Yucca Mountain nuclear waste repository site. Environ Geol Water Sci 18(3): 171–184

    Article  Google Scholar 

  43. Rutqvist J, Barr D, Birkholzer J, Chijimatsu M, Kolditz O, Liu Q, Oda Y, Wang W, Zhang C (2008) Results from an international simulation study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repositories. J Nucl Technol 163(1): 101–109

    Google Scholar 

  44. Schrefler BA, Matteazzi R, Gawin D, Wang X (2000) Two parallel computing methods for coupled thermohydromechanical problems. Computer-Aided Civil Infrastruct Eng 15(3): 176–188

    Article  Google Scholar 

  45. Shioya R, Yagawa G (2005) Large-scale parallel finite-element analysis using the internet: a performance study. Int J Numer Methods Eng 63(2): 218–230

    Article  MATH  Google Scholar 

  46. Stephansson O, Hudson J, Jing L (2004) Coupled thermo-hydro-mechanical-chemical processes in geo-systems: fundamentals, modelling, experiments, and applications. Geo-Engineering Book Series 2. Elsevier, Amsterdam

  47. Surma F, Geraud Y (2003) Porosity and thermal conductivity of the Soultz-sous-Forets granite. Pure Appl Geophys 160(5–6): 1125–1136

    Article  Google Scholar 

  48. Tenzer H, Schanz U, Homeier U (2000) HDR research programme and results of drill hole Urach 3 to depth of 4440 m the key for realisation of a hdr programme in southern Germany and northern Switzerland. In: Proceedings of the world geothermal congress 2000, pp 3927–3932

  49. Tezduyar TE, Sameh A (2006) Parallel finite element computations in fluid mechanics. Comput Methods Appl Mech Eng 195(13–16): 1872–1884

    Article  MATH  MathSciNet  Google Scholar 

  50. Tezuka K, Watanabe K (2000) Fracture network modeling of Hijiori hot dry rock reservoir by deterministic and stochastic crack network simulator (d/sc). In: Proceedings of the world geothermal congress 2000, pp 3933–3938

  51. Topping BHV, Khan AI (1996) Parallel finite element computations. Saxe-Coburg Publications, Edinburgh

    Google Scholar 

  52. Tsang C (1991) Coupled hydromechanical–thermochemical processes in rock fractures. Rev Geophys 29(4): 537–551

    Article  Google Scholar 

  53. Valley B, Evans K (2007) Stress state at Soultz-sous-Forêts to 5 km depth from wellbore failure and hydraulic observations. In: Proceedings of the 32nd workshop on geothermal reservoir engineering. Stanford University, Stanford, California

  54. Wagner W, Kurse A (1998) Properties of water and steam: the Industrial Standard IAPWS-IF97 for thermodynamic properties and supplementary equations for other properties. Springer, Berlin

    Google Scholar 

  55. Walsh R, McDermott C, Kolditz O (2008) Numerical modeling of stress–permeability coupling in rough fractures. J Hydrogeol 16(4): 613–627

    Article  Google Scholar 

  56. Wang W, Kolditz O (2007) Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media. Int J Numer Methods Eng 69(1): 162–201

    Article  MATH  Google Scholar 

  57. Wang W, Kosakowski G, Kolditz O (2009) A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput Geosci 35(8): 1631–1641

    Article  Google Scholar 

  58. Weidler R, Gerard A, Baria R, Baumgärtner J, Jung R (2002) Hydraulic and micro-seismic results of a massive stimulation test at 5 km depth at the European Hot-Dry-Rock test site Soultz, France. In: Proceedings of the 27th workshop on geothermal reservoir engineering. Stanford, California, January 28–30, 2002, pp 95–100

  59. Zyvoloski G, Dash Z, Kelkar S (1988) FEHM: Finite element heat and mass transfer code. Tech. Rep. LA-11224-MS, Los Alamos National Laboratory

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiro Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, N., Wang, W., McDermott, C.I. et al. Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput Mech 45, 263–280 (2010). https://doi.org/10.1007/s00466-009-0445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0445-9

Keywords

Navigation