Skip to main content
Log in

Hydrodynamics of a Nonstationary Flow in a Microcylinder Beginning Sudden Rotation

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Results of a theoretical investigation of an acceleration liquid flow in a microcylinder beginning sudden rotation are presented. The problem on this flow was solved analytically with the use of the Laplace transform and the method of groups of symmetries as well as numerically using the method of Boltzmann lattices. The nonstationary flow-velocity profiles obtained analytically were compared with the results of a numerical solution. It is shown that the flow in the microcylinder develops by the asymptotic law and that the time of stabilization of this flow increases with increase in the Knudsen number. An analytical expression for the friction coefficient of the indicated flow has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Calvert and J. Baker, Thermal conductivity and gaseous microscale transport, J. Thermophys. Heat Transf., No. 12, 138–145 (1998).

    Article  Google Scholar 

  2. M. Gad-el-Hak, The fluid mechanics of microdevices, ASME J. Fluid. Eng., No. 121, 5–33 (1999).

    Article  Google Scholar 

  3. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, Oxford (1994).

    Google Scholar 

  4. J. M. Haile, Molecular Dynamics Simulation, Wiley and Sons, New York (1992).

    Google Scholar 

  5. G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows Fundamentals and Simulation, Springer, New York (2005).

    MATH  Google Scholar 

  6. B. J. N. Wylie, Application of Two-Dimensional Cellular Automaton Lattice-Gas Models to the Simulation of Hydrodynamics, University of Edinburgh, Edinburgh (1990).

    Google Scholar 

  7. J. B. Maxwell, Lattice Boltzmann Methods for Interfacial Wave Modelling, University of Edinburgh, Edinburgh (1997).

    Google Scholar 

  8. X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, No. 47, 1815–1819 (1993).

    Article  Google Scholar 

  9. X. Shan and H. Chen, Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E, No. 49, 2941–2948 (1994).

    Article  Google Scholar 

  10. X. He and L. Luo, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann eqution, Phys. Rev. E, No. 56, 6811–6817 (1997).

    Article  Google Scholar 

  11. Q. Zou and X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9, No. 6, 1591–1596 (1997).

    Article  MathSciNet  Google Scholar 

  12. F. Szymansky, Quelques solution exactes des équations de l′hydrodynamique de fluide visqueux dans le cas d′un tube cylindrique, J. Math. Pures Appl., 97, No. 11, 67–107 (1932).

    Google Scholar 

  13. W. Müller, Zum Problem der Anlaufströmung einer Flüssigkeit im geraden Rohr mit Kreisring- und Kreisquerschnitt, ZAMM, No.16, 227–238 (1936).

    Article  Google Scholar 

  14. W. Gerberts, Zur instationären, laminaren Strömung einer inkompressiblen zähen Flüssigkeit in kreiszylindrischen Rohren, Z. Angew. Phys., No. 3, 267–271 (1951).

    MATH  Google Scholar 

  15. H. Schlichting and K. Gersten, Boundary Layer Theory, 8th edn., Springer, Berlin (2000).

    Book  Google Scholar 

  16. A. A. Avramenko and A. V. Kuznetsov, Start-up flow in a channel or pipe occupied by a fluid-saturated porous medium, J. Porous Media, 12, No. 4, 361–367 (2009).

    Article  Google Scholar 

  17. H. Lamb, Hydrodynamics, Cambridge Univ. Press (1993).

  18. A. A. Avramenko, A. I. Tyrinov, and I. V. Shevchuk, Start-up slip flow in a microchannel with a rectangular cross section, Theor. Comput. Fluid Dyn., 29, No. 5, 351–371 (2015).

    Article  Google Scholar 

  19. A. A. Avramenko, A. I. Tyrinov, and I. V. Shevchuk, An analytical and numerical study on the start-up flow of slightly rarefied gases in a parallel-plate channel and a pipe, Phys. Fluids, 27, Issue 4, 042001-1–042001-18 (2015).

    Article  Google Scholar 

  20. P. Olver, Applications of Lie Groups to Differential Equations, Springer (2000).

  21. M. Abramowitz and I. A. Stegun, Reference Book on Special Functions [Russian translation], Nauka, Moscow (1979).

    MATH  Google Scholar 

  22. A. I. Tyrinov, Simulation of microflows by the method of Boltzmann lattices, Prom. Teplotekh., No. 2, 11–19 (2011).

    Google Scholar 

  23. A. I. Tyrinov, A. A. Avramenko, B. I. Basok, and B. V. Davydenko, Modeling of flows in a microchannel on the Boltzmann lattice equation, J. Eng. Phys. Thermophys., 85, No. 1, 65–72 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Avramenko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 6, pp. 1526–1536, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avramenko, A.A., Dmitrenko, N.P., Kravchuk, A.B. et al. Hydrodynamics of a Nonstationary Flow in a Microcylinder Beginning Sudden Rotation. J Eng Phys Thermophy 91, 1452–1461 (2018). https://doi.org/10.1007/s10891-018-1880-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1880-2

Keywords

Navigation