Skip to main content
Log in

Start-up slip flow in a microchannel with a rectangular cross section

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The paper outlines results of the theoretical study of an incompressible fluid flow in a rectangular microchannel subject to a sudden time-dependent pressure drop. The momentum equation together with the independent and dependent variables was reduced to a self-similar form by means of the symmetry analysis. The problem was solved using two analytical approaches, the Fourier method and the method of eigenfunction decomposition, as well as numerically by means of the lattice Boltzmann method. The unsteady two-dimensional velocity profiles in the microchannel were predicted using the infinite series and validated against the numerical solution. As expected, the flow pattern asymptotically attains the fully developed state, which is reached more rapidly for smaller Knudsen numbers. The analytical solution yielded expressions for the calculation of the hydraulic resistance coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calvert M., Baker J.: Thermal conductivity and gaseous microscale transport. J. Thermophys. Heat Transf. 12, 138–145 (1998)

    Article  Google Scholar 

  2. Schaaf S.A., Chambre P.L.: Flow of Rarefied Gases. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  3. Gad-el-Hak M.: The fluid mechanics of microdevices—the Freeman scholar lecture. ASME J. Fluids Eng. 121, 5–33 (1999)

    Article  Google Scholar 

  4. Bird G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford (1994)

    Google Scholar 

  5. Stefanov S., Cercignani C.: Monte Carlo simulation of the Taylor–Couette flow of a rarefied gas. J. Fluid Mech. 256, 199–213 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Riechelmann D., Nanbu K.: Monte Carlo direct simulation of the Taylor instability in rarefied gas. Phys. Fluids A 5, 2585–2587 (1993)

    Article  MATH  Google Scholar 

  7. Yoshida, H. and Aoki, K.: A numerical study of Taylor–Couette problem for a rarefied gas: effect of rotation of the outer cylinder. In: Capitelli, M. (ed.) Rarefied Gas Dynamics: 24th Int. Symposium, American Institute of Physics, pp. 467–472 (2005)

  8. Avramenko A.A., Kuznetsov A.V.: Instability of a slip flow in a curved channel formed by two concentric cylindrical surfaces. Eur. J. Mech. B Fluids 28(6), 722–727 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Haile J.M.: Molecular Dynamics Simulation. Wiley, New York (1992)

    Google Scholar 

  10. Karniadakis G., Beskok A., Aluru N.: Microflows and Nanoflows Fundamentals and Simulation. Springer, New York (2005)

    MATH  Google Scholar 

  11. Wylie B.J.N.: Application of Two-Dimensional Cellular Automaton Lattice-Gas Models to the Simulation of Hydrodynamics. University of Edinburgh, Edinburgh (1990)

    Google Scholar 

  12. Maxwell J.B.: Lattice Boltzmann Methods for Interfacial Wave Modelling. University of Edinburgh, Edinburgh (1997)

    Google Scholar 

  13. Cercignani C.: Theory and Applications of the Boltzmann Equation. Elsevier, Amsterdam (1976)

    Google Scholar 

  14. Shan X., Chen H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993)

    Article  Google Scholar 

  15. Shan X., Chen H.: Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49, 2941–2948 (1994)

    Article  Google Scholar 

  16. He X., Luo L.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

    Article  Google Scholar 

  17. Zou Q., He X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1596 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tyrinov A.I., Avramenko A.A., Basok B.I., Davydenko B.V.: Modeling of flows in a microchannel based on the Boltzmann lattice equation. J. Eng. Phys. Thermophys. 85(1), 65–72 (2012)

    Article  Google Scholar 

  19. Szymansky F.: Quelques solution exactes des équations de l’hydrodynamique de fluide visqueux dans le cas d’un tube cylindrique. J. Math. Pures Appl. 97(11), 67–107 (1932)

    Google Scholar 

  20. Müller W.: Zum Problem der Anlaufströmung einer Flüssigkeit im geraden Rohr mit Kreisring- und Kreisquerschnitt. ZAMM 16, 227–238 (1936)

    Article  MATH  Google Scholar 

  21. Gerberts W.: Zur instationären, laminaren Strömung einer inkompressiblen zähen Flüssigkeit in kreiszylindrischen Rohren. Z. Angew. Phys. 3, 267–271 (1951)

    Google Scholar 

  22. Schlichting H., Gersten K.: Boundary Layer Theory, 8th edn. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  23. Avramenko A.A., Kuznetsov A.V.: Start-up flow in a channel or pipe occupied by a fluid-saturated porous medium. J. Porous Media 12(4), 361–367 (2009)

    Article  Google Scholar 

  24. Indinger T., Shevchuk I.V.: Transient laminar conjugate heat transfer of a rotating disk: theory and numerical simulations. Int. J. Heat Mass Transf. 47(14–16), 3577–3581 (2004)

    Article  MATH  Google Scholar 

  25. Shevchuk I.V.: Unsteady conjugate laminar heat transfer of a rotating non-uniformly heated disk: application to the transient experimental technique. Int. J. Heat Mass Transf. 49, 3530–3537 (2006)

    Article  MATH  Google Scholar 

  26. Lamb H.: Hydrodynamics. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  27. Lihnaropoulos J., Valougeorgis D.: Unsteady vacuum gas flow in cylindrical tubes. Fusion Eng. Des. 86(9–11), 2139–2142 (2011)

    Article  Google Scholar 

  28. Bhatnagar P.L., Gross E.P., Krook M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  29. Sharipov F., Graur I.: General approach to transient flows of rarefied gases through long capillaries. Vacuum 100, 22–25 (2014)

    Article  Google Scholar 

  30. Agrawal A., Prabhu S.V.: Deduction of slip coefficient in slip and transition regimes from existing cylindrical Couette flow data. Exp. Therm. Fluid Sci. 32, 991–996 (2008)

    Article  Google Scholar 

  31. Sharipov F.: Data on the velocity slip and temperature jump on a gas–solid interface. J. Phys. Chem. Ref. Data 40(2), 023101 (2011)

    Article  Google Scholar 

  32. Ebert W.A., Sparrow E.M.: Slip flow in rectangular and annular ducts. ASME J. Basic Eng. 87, 1018–1024 (1965)

    Article  Google Scholar 

  33. Morini G.L., Spiga M.: Slip flow in rectangular microtubes. Microscale Thermophys. Eng. 2(4), 273–282 (1998)

    Article  Google Scholar 

  34. Aubert C., Colin S.: High-order boundary conditions for gaseous flows in rectangular microchannels. Microscale Thermophys. Eng. 5(1), 41–54 (2001)

    Article  Google Scholar 

  35. Wang C.Y.: Brief review of exact solutions for slip flow in ducts and channels. ASME J. Fluids Eng. 134(9), 094501 (2012)

    Article  Google Scholar 

  36. Wang C.Y.: Two-fluid oscillatory flow in a channel. Theor. Appl. Mech. Lett. 1, 032007 (2011)

    Article  Google Scholar 

  37. Ng C.-O., Wang C.Y.: Oscillatory flow through a channel with stick-slip walls: complex Navier’s slip length. ASME J. Fluids Eng. 133(1), 014502 (2011)

    Article  Google Scholar 

  38. Khaled A.R.A., Vafai K.: The effect of the slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions. Int. J. Nonlinear Mech. 39, 795–809 (2004)

    Article  MATH  Google Scholar 

  39. Zhang J., Miksis M.J., Bankoff S.G.: Nonlinear dynamics of a two-dimensional viscous drop under shear flow. Phys. Fluids 18(7), 072106 (2006)

    Article  Google Scholar 

  40. Mohyuddin M.R.: Few exact solution of the Stokes’ problem with slip at the wall in case of suction/blowing. J. Mech. Eng. Sci. Technol. 21, 829–836 (2007)

    Article  Google Scholar 

  41. Asghar S., Hanif K., Hayat T.: The effect of the slip condition on unsteady flow due to non-coaxial rotations of disk and a fluid at infinity. Meccanica 42, 141–148 (2007)

    Article  MATH  Google Scholar 

  42. Chen C.I., Chen C.K., Lin H.J.: Analysis of unsteady flow through a microtube with wall slip and given inlet volume flow rate variations. J. Appl. Mech. 75, 014506 (2008)

    Article  Google Scholar 

  43. Mukhopadhyay S., Andersson H.I.: Effects of slip and heat transfer analysis of flow over an unsteady stretching surface. Heat Mass Transf. 45, 1447–1452 (2009)

    Article  Google Scholar 

  44. Abbas Z., Wang Y., Hayat T., Oberlackm M.: Slip effects and heat transfer analysis in a viscous fluid over an oscillatory stretching surface. Int. J. Numer. Methods Fluids 59(4), 443–458 (2009)

    Article  MATH  Google Scholar 

  45. Colin S., Aubert C., Caen R.: Unsteady gaseous flows in rectangular microchannels: frequency response of one or two pneumatic lines connected in series. Eur. J. Mech. B Fluids 17(1), 79–104 (1998)

    Article  MATH  Google Scholar 

  46. Wiwatanapataphee, B., Wu, Y.H., Suharsono, S.: Transient flows of Newtonian fluid through a rectangular microchannel with slip boundary. In: Abstract and Applied Analysis, Paper 530605 (2014)

  47. Beskok A., Karniadakis G.E.: Simulation of heat and momentum transfer in complex microgeometries. AIAA J. Thermophys. Heat Transf. 8(4), 647–655 (1994)

    Article  Google Scholar 

  48. Beskok A., Karniadakis G.E.: Simulation of slip-flows in complex micro-geometries. ASME DSC 40, 355–370 (1992)

    Google Scholar 

  49. Avramenko A.A., Tyrinov A.I., Shevchuk I.V.: An analytical and numerical study on the start-up flow of slightly rarefied gases in a parallel-plate channel and a pipe. Phys. Fluids 27(4), 042001 (2015)

    Article  Google Scholar 

  50. Sharipov F., Kalempa D.: Oscillatory Couette flow at arbitrary oscillation frequency over the whole range of the Knudsen number. Microfluidics Nanofluidics 4, 363–374 (2008)

    Article  Google Scholar 

  51. Olver P.: Applications of Lie Groups to Differential Equations. Springer, Berlin (2000)

    MATH  Google Scholar 

  52. Lauga E., Cossu C.A.: Note on the stability of slip channel flows. Phys. Fluids 17, 088106 (2005)

    Article  Google Scholar 

  53. Kamke E.: Differentialgleichungen, I. Gewöhnliche Differentialgleichungen. Springer, New York (1997)

    Google Scholar 

  54. Munson B.R., Young D.F., Okiishi T.H., Huebsch W.W.: Fundamentals of Fluid Mechanics, 6th edn. Wiley, Hoboken (2009)

    Google Scholar 

  55. Ho C.-F., Chang C., Lin K.-H., Lin C.-A.: Consistent boundary conditions for 2D and 3D lattice Boltzmann simulations. Comput. Model. Eng. Sci. 44(2), 137–155 (2009)

    MathSciNet  Google Scholar 

  56. Çengel Y.A., Cimbala J.M.: Fluid Mechanics: Fundamentals and Applications. McGraw-Hill, New York (2006)

    Google Scholar 

  57. Sharipov F.: Rarefied gas flow through a long rectangular channel. J. Vac. Sci. Technol. A 17(5), 3062–3066 (1999)

    Article  Google Scholar 

  58. Kandlikar S.G., Garimella S., Li D., Colin S., King M.R.: Heat Transfer and Fluid Flow in Minichannels and Microchannels, 2nd edn. Elsevier, Oxford (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Shevchuk.

Additional information

Communicated by Oleg Zikanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avramenko, A.A., Tyrinov, A.I. & Shevchuk, I.V. Start-up slip flow in a microchannel with a rectangular cross section. Theor. Comput. Fluid Dyn. 29, 351–371 (2015). https://doi.org/10.1007/s00162-015-0361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0361-x

Keywords

Navigation