Skip to main content
Log in

Determination of the Thermophysical Characteristics of Liquids by the Laser-Burst Method

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

From the results of mathematical modeling of heat-conduction processes under conditions corresponding to experiments on determination of the thermophysical characteristics of liquids by the laser-burst method, the authors have substantiated possible ranges of variation in basic factors. The authors have established the values of the heat fluxes and of the thicknesses of liquid layers that ensure minimum errors in determining the thermal diffusivity of the liquid when the surface of a measurement cell is exposed to a laser burst of finite duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Parker, R. J. Jenkins, and C. P. Butler, Flash method of determining thermal diffusivity, heat capacity and thermal conductivity, J. Appl. Phys., 32, 1675–1684 (1961).

    Article  Google Scholar 

  2. M. Akoshima and T. Baba, Study on a thermal-diffusivity standard for laser flash method measurements, Int. J. Thermophys., 27, No. 4, 1189 –1203 (2006).

    Article  Google Scholar 

  3. O. Altun, Erhan Boke, and A. Kalemtas, Problems for determining the thermal conductivity of TBCs by laser-flash method, J. Achiev. Mater. Manuf. Eng., 30, No. 2, 115–120 (2008).

    Google Scholar 

  4. Y. Tada, M. Harada, M. Tarigani, and W. Equchi, Laser flash method for measuring thermal conductivity of liquids — application to low thermal conductivity liquids, J. Rev. Sci. Instrum., 49, No. 9, 1305–1314 (1978).

    Article  Google Scholar 

  5. N. S. Srinivasan, X. G. Xiao, and S. Seetharaman, Radiation effects in high-temperature thermal diffusion measurements using the laser-flash method, J. Appl. Phys., 75, 2325– 2334 (1994).

    Article  Google Scholar 

  6. J. Blumm, A. Lindemann, and S. Min, Thermal characterization of liquids and pastes using the flash technique, Thermochim. Acta, 455, 26–29 (2007).

    Article  Google Scholar 

  7. E. P. Oliviera, Z. E. Silva, and Cr. K. Silva, The flash method to the measurement of the thermal properties of yogurt, 20th Int. Congress of Mechanical Engineering, Proc. COBEM 2009, COB09-1439.pdf (2009).

  8. Thermal-Diffusivity and Thermal-Conductivity Analyzer LFA 427; URL: http://granat-e.ru/netzsch_lfa-427.html.

  9. G. V. Kuznetsov and M. D. Kats, Errors in determining thermophysical characteristics by the laser-flash method due to the sample′ thickness and the thermal-pulse duration, Izmer. Tekh., No. 4, 51–54 (2012).

  10. G. V. Kuznetsov and M. D. Kats, Influence of sample dimensions on errors in determining the thermal diffusivity of semitransparent semiconducting materials by the laser-pulse method, J. Eng. Phys. Thermophys., 87, No. 6, 1392–1397 (2014).

    Article  Google Scholar 

  11. A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  12. K. Chang and F. Hayes, Nonlinear Singularly Perturbed Boundary-Value Problems. Theory and Applications [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  13. V. L. Strakhov, A. N. Garashchenko, G. V. Kuznetsov, and V. P. Rudzinskii, Mathematical modeling of thermophysical and thermochemical processes in combustion of intumescent coatings, Fiz. Goreniya Vzryva, 37, No. 2, 63–73 (2001).

    Google Scholar 

  14. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Modeling of the ignition of liquid fuel by a local heating source under the conditions of burnoff of the liquid, Khim. Fiz., 30, No. 8, 62–67 (2011).

    Google Scholar 

  15. G. V. Kuznetsov, N. I. Kurilenko, V. I. Maksimov, G. Ya. Mamontov, and T. A. Nagornova, Heat transfer under heating of a local region of a large production area by gas infrared radiators, J. Eng. Phys. Thermophys., 86, No. 3, 519–524 (2013).

    Article  Google Scholar 

  16. M. D. Kats and I. M. Kats, Errors in determining the thermal characteristics of liquids by the laser-pulse method, MATEC Web Conf., 72, Article No. 01041, 1–6 (2016).

  17. N. B. Vartaftik, V. P. Filippov, A. A. Tarizmanov, and E. E. Totskii, Handbook of Thermal Conductivities of Liquids and Gases [in Russian], Énergoatomizdat, Moscow (1990).

    Google Scholar 

  18. V. S. Chirkin, Thermophysical Properties of Materials of Nuclear Technology: a Handbook [in Russian], Atomizdat, Moscow (1968).

    Google Scholar 

  19. A. A. Samarskii and Yu. I. Popov, Difference Methods of Solution of Gas-Dynamics Problems [in Russian], Nauka, Moscow (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Kats.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 4, pp. 1150–1156, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kats, M.D., Kats, I.M. Determination of the Thermophysical Characteristics of Liquids by the Laser-Burst Method. J Eng Phys Thermophy 91, 1090–1096 (2018). https://doi.org/10.1007/s10891-018-1835-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1835-7

Keywords

Navigation