Skip to main content
Log in

Equation of State for Calculating Temperature of Material in Explosive Processing

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An equation of state with potential and thermal pressure components has been obtained which makes it possible to calculate the temperature of a condensed medium at high energy densities. The derivation of the equation of state is based on the concepts of a covolume and a free volume for thermal motion of particles and universality of the relationship between the pressure behind the shock-wave front and the potential pressure component. For the proposed equation of state, it is necessary to know only the shock adiabat of the medium. A comparison has been made of calculation results and experimental data for the temperature behind the shock-wave front in elementary substances and chemical compounds. The obtained equation of state can be of use in practical applications and in shock-wave experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov and I. V. Lomonosov, Ya. B. Zel’dovich and problems of the equations of state of a substance under extremum conditions, Usp. Fiz. Nauk, 184, No. 3, 231−245 (2014).

    Article  Google Scholar 

  2. V. P. Kopyshev, The Theory of the Equations of State [in Russian], FGUP "RFYaTs-NVIIÉF," Sarov (2009).

    Google Scholar 

  3. A. B. Medvedev, Modifi cation of the Van der Waals model for dense states, in: Shock Waves and Extremum States of a Substance [in Russian], Nauka, Moscow (2000), pp. 315−341.

  4. D. G. Gordeev, L. F. Gudarenko, A. A. Kayakin, and V. G. Kudel’kin, Model of the equation of state of metals with efficient account taken of ionization. The equations of state of Ta, W, Al, and Be, Fiz. Goreniya Vzryva, 49, No. 1, 106–120 (2013).

    Google Scholar 

  5. Ya. B. Zel’dovich and Y. P. Raizer, The Physics of Shock Waves and of High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  6. R. F. Trunin (Ed.), Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances [in Russian], FGUP "RFYaTs-NVIIÉF," Sarov (2006).

  7. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids [Russian translation], Izd. Inostrannoi Literatury, Moscow (1961).

    MATH  Google Scholar 

  8. D. V. Minakov, P. R. Levashov, K. V. Khishchenko, and V. E. Fortov, Quantum molecular dynamics simulation of shockwave experiments in aluminum, J. Appl. Phys., 115, No. 22, 223512-223519 (2014).

    Article  Google Scholar 

  9. V. F. Anisichkin, Generalized shock adiabats and zero isotherms of elements, Fiz. Goreniya Vzryva, 15, No. 2, 152-157 (1979).

    Google Scholar 

  10. V. F. Anisichkin, On calculation of shock adiabats of chemical compounds, Fiz. Goreniya Vzryva, 16, No. 5, 151-154 (1980).

    Google Scholar 

  11. S. B. Kormer, Optical investigations of the properties of shock-compressed condensed dielectrics, Usp. Fiz. Nauk, 94, No. 4, 641–687 (1968).

    Article  Google Scholar 

  12. V. K. Gryaznov, M. V. Zhernokletov, I. L. Iosilevskii, S. I. Kirshanov, V. B. Mintsev, A. L. Mikhailov, A. B. Mezhevov, M. A. Mochalov, V. E. Fortov, and A. N. Shuikin, Properties of liquid argon in shock compression in the range of pressures 130–530 GPa, Proc. Int. Conf. VII Khariton Scientifi c Readings [in Russian], FGUP "RFYaTs-NVIIÉF," Sarov (2005), pp. 326–331.

  13. M. Van Thiel and B. J. Alder, Shock compression of argon, J. Chem. Phys., 44, Issue 3, 1056–1065 (1966).

    Article  Google Scholar 

  14. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, M. A. Mochalov, and V. D. Urlin, Shock compression and the radiance temperature of the shock-wave front in argon. Electronic radiation shielding, Zh. Exp. Teor. Fiz., 88, Issue 4, 1271–1280 (1985).

    Google Scholar 

  15. O. G. Peterson, D. N. Batchelder, and R. O. Simmons, Measurements of X-ray lattice constant, thermal expansivity, and isothermal compressibility of argon crystals, Phys. Rev., 150, No. 2, 703–711 (1966).

    Article  Google Scholar 

  16. M. Ross, H. K. Mao, P. M. Bell, and J. A. Xu, The equation of state of dense argon: A comparison of shock and static studies, J. Chem. Phys., 85, No. 2, 1028–1036 (1986).

    Article  Google Scholar 

  17. I. M. Voskoboinikov, M. F. Gogulya, and Yu. A. Dolgobrodov, Temperature of shock compression of liquid nitrogen and argon, Dokl. Akad. Nauk, 246, No. 3, 579–581 (1979).

    Google Scholar 

  18. R. Boehler, D. Santamaria-Perez, D. Errandonea, and M. Mesouar, Melting, density, and anisotropy of iron at core conditions: new X-ray measurements to 150 GPa, J. Phys. Conf. Series, 121, 022018–022027 (2008).

    Article  Google Scholar 

  19. C. S. Yoo, N. C. Holmes, M. Ross, D. J. Webb, and C. Pike, Shock temperatures and melting of iron at Earth core conditions, Phys. Rev. Lett., 70, No. 25, 3931–3934 (1993).

    Article  Google Scholar 

  20. T. J. Ahrens, K. G. Holland, and G. Q. Chen, Shock temperatures and the melting point of iron, in: S. C. Schmidt, D. P. Dandekar, and J. W. Forbes (Eds.), Shock Compression of Condensed Matter–1997, Woodbury, New York (1998), pp. 133−136.

    Google Scholar 

  21. G. Huser, M. Koenig, A. Benuzzi-Mounaix, E. Henry, T. Vinci, B. Faral, M. Tomasini, B. Telaro, and D. Batani, Temperature and melting of laser-shocked iron releasing into an LiF window, Phys. Plasmas, 12, 60701–60709 (2005).

    Article  Google Scholar 

  22. S. A. Bordzilovskii, M. S. Voronin, S. M. Karakhanov, and L. A. Merzhievskii, Temperature of shock compression of polymeric materials, Dokl. Akad. Nauk, 455, No. 6, 646–650 (2014).

    Google Scholar 

  23. S. P. Marsh (Ed.), LASL Shock Hugoniot Data, University of California Press, Berkeley (1980).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Anisichkin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 90, No. 4, pp. 1025–1035, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisichkin, V.F. Equation of State for Calculating Temperature of Material in Explosive Processing. J Eng Phys Thermophy 90, 978–987 (2017). https://doi.org/10.1007/s10891-017-1646-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-017-1646-2

Keywords

Navigation