Skip to main content
Log in

New Formulas for Calculating the Fluid Flow Characteristics in a Circular Pipe

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

We propose new formulas for calculating the friction factor in pipes with smooth walls and relations between the mean and the maximum fluid flow velocity in a pipe. The formulas are in better agreement with experimental data than the literature relations. An expression for the friction factor suitable for all flow conditions is proposed. The results of this work can be used in calculating the hydraulic resistance of pipes, as well as in calculating the heat and mass transfer processes in apparatuses incorporating tubular elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Romeo, K. Royo, and A. Monzón, Improved explicit equations for estimation of friction factor in rough and smooth pipes, Chem. Eng. J., 86, No. 3, 369−374 (2002).

    Article  Google Scholar 

  2. B. J. McKeon, M. V. Zagarola, and A. J. Smits, A new friction factor relationship for fully developed pipe flow, J. Fluid Mech., 538, 429−443 (2005).

    Article  MATH  Google Scholar 

  3. A. Avci and I. Karagoz, A novel explicit equation for friction factor in smooth and rough pipes, J. Fluid Eng., 131, No. 6, 061203 (2009).

  4. A. Ghanbari, F. F. Farshad, and H. H. Reice, Newly developed friction factor correlation for pipe flow and flow assurance, J. Chem. Eng. Mater. Sci., 2, 83−86 (2011).

    Google Scholar 

  5. X. Fang, Y. Xu, and Z. Zhou, New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations, Nucl. Eng. Des., 241, 897−902 (2011).

    Article  Google Scholar 

  6. B. J. McKeon, C. J. Swanson, M. V. Zagarola, R. J. Donnelly, and A. J. Smits, Friction factor for smooth pipe flow, J. Fluid Mech., 511, 41−44 (2004).

    Article  MATH  Google Scholar 

  7. V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chem. Eng., 16, 359−368 (1976).

    Google Scholar 

  8. I. O. Protod′yakonov and Yu. G. Chesnokov, Hydrodynamical Principles of the Processes of Chemical Technology [in Russian], Khimiya, Leningrad (1987).

  9. Yu. G. Chesnokov, Infl uence of the Reynolds number on the laws of turbulent liquid flow in a plane channel, Zh. Tekh. Fiz., 80, 33−39 (2010).

    Google Scholar 

  10. Yu. G. Chesnokov, Calculation of some characteristics of turbulent fluid flow in a circular pipe, Zh. Prikl. Khim., 83, 1493−1498 (2010).

    Google Scholar 

  11. M. V. Zagarola and A. J. Smits, Mean-flow scaling of turbulent pipe flow, J. Fluid Mech., 373, 33−79 (1998).

    Article  MATH  Google Scholar 

  12. B. J. McKeon, J. Li, W. Jiang, J. F. Morrison, and A. J. Smits, Further observation on the mean velocity distribution in fully developed pipe flow, J. Fluid Mech., 501, 135−147 (2004).

    Article  MATH  Google Scholar 

  13. Yu. G. Chesnokov, Deviations from the temperature defect law, Zh. Prikl. Khim., 86, No. 2, 239−245 (2013).

    Google Scholar 

  14. N. Furuichi, Y. Terao, Y. Wada, and Y. Tsuji, Friction factor and mean velocity profile for pipe flow at high Reynolds numbers, Phys. Fluids, 27, 095108 (2015).

    Article  Google Scholar 

  15. J. G. M. Eggels, F. Unger, M. H. Weiss, J. Westerweel, R. J. Adrian, R. Friedrich, and F. T. M. Nieuwstadt, Fully developed pipe flow: A comparison between direct numerical simulation and experiment, J. Fluid Mech., 268, 175−209 (1994).

    Article  Google Scholar 

  16. K. Fukagata and N. Kasagi, Highly energy-conservative finite difference method for cylindrical coordinate system, J. Comput. Phys., 181, 478−498 (2002).

    Article  MATH  Google Scholar 

  17. X. Wu and P. Moin, A direct numerical simulation study on mean velocity in turbulent pipe flow, J. Fluid Mech., 608, 81−112 (2008).

    Article  MATH  Google Scholar 

  18. C. Chin, A. S. H. Ooi, I. Marusic, and H. M. Blackburn, The influence of pipe length on turbulence statistics computed from direct numerical simulation data, Phys. Fluids, 22, 115107 (2010).

    Article  Google Scholar 

  19. G. K. El Khoury, P. Schlatter, A. Noorani, P. F. Fischer, G. Brethouwer, and A. V. Johansson, Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers, Flow Turbul. Combust., 91, 475−495 (2013).

    Article  Google Scholar 

  20. C. Chin, J. P. Monty, and A. Ooi, Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layer, Int. J. Heat Fluid Flow, 45, 33−40 (2014).

    Article  Google Scholar 

  21. Yu. G. Chesnokov, Deviations from the velocity defect law observed at low Reynolds numbers, Zh. Tekh. Fiz., 81, 30−34 (2011).

    Google Scholar 

  22. S. W. Churchill, Friction factor equations spans all fluid-flow regimes, Chem. Eng., 84, 91 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chesnokov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 90, No. 4, pp. 1005–1011, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokov, Y.G. New Formulas for Calculating the Fluid Flow Characteristics in a Circular Pipe. J Eng Phys Thermophy 90, 958–964 (2017). https://doi.org/10.1007/s10891-017-1643-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-017-1643-5

Keywords

Navigation