Skip to main content
Log in

Numerical Simulation of the Intensification of the Heat Exchange in a Plane-Parallel Channel with a Cylindrical Shallow Dimple on the Heated Wall

  • HYDROGASDYNAMICS IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A comparison of the results of numerical calculations of the convective heat exchange in narrow plane-parallel channels with shallow cylindrical and spherical dimples on their wall heated by a constant heat flow under the conditions of low-velocity turbulent water flow in a channel at Re = 20,000 has been performed. Hydrodynamic features of the vortex intensification of the heat exchange in the indicated channels as a result of the interaction of the swirling flows in them with the side walls of a dimple were determined. The thermal and thermohydraulic efficiencies of a shallow cylindrical dimple were estimated. It is shown that this dimple offers substantial advantages over a spherical dimple of the same depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Shchukin, A. P. Kozlov, R. S. Agachev, and Ya. P. Chudnovskii (V. E. Alemasov Ed.), Intensification of Heat Exchange by Spherical Dimples under the Action of Disturbing Factors [in Russian], Izd. Kazan. Gos. Tekhn. Univ., Kazan (2003).

  2. G. I. Kiknadze, I. A. Gachechiladze, and V. V. Alekseev, Self-Organization of Tornado-Like Jets in Flows of Continuous Viscous Media and Intensification of Heat and Mass Exchange Accompanying This Effect [in Russian], Izd. MÉI, Moscow (2005).

  3. A. A. Khalatov, Heat Exchange and Hydrodynamics near Surface Recesses (Dimples) [in Russian], Inst. Tekhn. Teplofiz. NAN Ukrainy, Kiev (2005).

  4. A. A. Khalatov, I. I. Borisov, and S. V. Shevtsov, Heat Exchanged and Hydrodynamics in Fields of Centrifugal Mass Forces [in Russian], Vol. 5, Inst. Tekhn. Teplofiz. NAN Ukrainy, Kiev (2005).

  5. Yu. F. Gortyshov, I. A. Popov, V. V. Olimpiev, A. V. Shchelchkov, and S. I. Kas′kov (Yu. F. Gortyshov, Ed.), Thermohydraulic Efficiency of Promising Methods of Intensification of Heat Transfer in Channels of Heat-Exchange Equipment. Intensification of Heat Exchange [in Russian], Tsentr Innovats. Tekhnol., Kazan (2009).

  6. B. V. Dzyubenko, Yu. A. Kuzma-Kichta, A. I. Leontiev, I. I. Fedik, and L. P. Kholpanov, Intensification of Heat and Mass Exchange in the Macro-, Micro-, and Nanoscales [in Russian], Izd. TsNII "ATOMINFORM," Moscow (2008).

  7. Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A. I. Leontiev, Numerical Simulation of Vortex Intensification of Heat Exchange in Tube Banks [in Russian], Sudostroenie, St. Petersburg (2005).

  8. A. Leontiev, S. Isaev, N. Kornev, Ya. Chudnovsky, and E. Hassel, Vortex heat transfer enhancement in dimpled channels, in: Proc. 15th Int. Heat Transfer Conf. ″IHTC-15, August 10–15, 2014, Kyoto, Japan (2014), IHTC15-9952.

  9. S. A. Isaev, A. I. Leontiev, M. E. Gul′tsova, and Yu. A. Popov, Transformation and intensification of the tornado-like flow in a narrow channel as a result of the elongation of an oval dimple with a fixed spot area, Pis′ma Zh. Tekh. Fiz., 41, Issue 12, 89–96 (2015).

  10. K. Wighardt, Erhöhung des turbulenten Reibungswidestandes durch Oberflachen-störungen, Forschungshefte für Schiffstechnik, No. 1, 65–81 (1953).

  11. K. H. Presser, Empirische Gleichungen zur Berechnung der Stoff- und Wärmeübertragung für den Spezialfall der abgerissenen Strömung, Int. J. Heat Mass Transf., 15, 2447–2471 (1972).

    Article  Google Scholar 

  12. M. Hiwada, T. Kawamum, J. Mbuch, and M. Kumada, Some characteristics of flow pattern and heat transfer past a cylindrical cavity, Bulletin ISME, 26, No. 220, 1744–1758 (1983).

  13. A. A. Khalatov, A. Byerley, Seong-Ki Min, and D. Ochoa, Flow characteristics within and downstream of spherical and cylindrical dimple on a flat plane at low Reynolds number, ASME, Paper No.GT2004-53656 (2004).

  14. A. A. Khalatov, A. Byerley, Seong-Ki Min, and R. Vinsent, Application of advanced techniques to study fluid flow and heat transfer within and downstream of single dimple, Proc. V Minsk Int. Heat and Mass Transfer Forum, Minsk, Belarus (2004), pp. 1–20.

  15. S. A. Isaev, A. I. Leontiev, Yu. F. Gortyshov, I. A. Popov, and P. A. Baranov, Numerical simulation of the intensification of the heat exchange in the water flow in a narrow cylindrical channel with cylindrical dimples on the heated wall, Tepl. Protsessy Tekhn., 5, No. 12, 542–551 (2013).

    Google Scholar 

  16. A. Leontiev, S. Isaev, N. Kornev, Ja. Chudnovsky, and E. Hassel, Numerical modeling and physical simulation of vortex heat transfer enhancement mechanisms over dimpled relief, in: Proc. 14 Int. Heat Transfer Conf. ″IHTC-14″ (2010), IHTC14-22334.

  17. V. I. Terekhov, S. V. Kalinina, and Yu. M. Mshvidobadze, Heat transfer coefficient and aerodynamic resistance on a surface with a single dimple, Enhanced Heat Transf., 4, 131–145 (1997).

    Article  Google Scholar 

  18. J. Turnow, N. Kornev, S. Isaev, and E. Hassel, Vortex-jet mechanism in a channel with spherical dimples for heat transfer augmentation, in: Proc. Sixth Int. Symp. on Turbulence and Shear Flow Phenomena, 22–24 June, 2009, Seoul, Korea (2009), Vol. 1, pp. 321–326.

  19. S. A. Isaev, N. V. Kornev, A. I. Leontiev, and E. Hassel, Influence of the Reynolds number and the spherical dimple depth on the turbulent heat transfer and hydraulic loss in a narrow channel, Int. J. Heat Mass Transf., 53, Issues 1–3, 178–197 (2010).

  20. S. A. Isaev, A. V. Schelchkov, A. I. Leontiev, P. A. Baranov, and M. E. Gulcova, Numerical simulation of the turbulent air flow in the narrow channel with a heated wall and a spherical dimple placed it for vortex heat transfer enhancement depending on the dimple depth, Int. J. Heat Mass Transf., 94, 426–448 (2016).

    Article  Google Scholar 

  21. S. A. Isaev, A. I. Leontiev, and M. E. Gul′tsova, Intensification of the tornado-like heat exchange in a narrow channel by individual oval dimples identical in density and depth and different in length, in: Proc. VIII School-Seminar of Young Scientists and Specialists supervised by Academician of the Russian Academy of Sciences V. E. Alemasov ″Problems in the Heat and Mass Exchange and Hydrodynamics in the Power-Plant Engineering, Izd. Kazansk. Gos. Énerg. Univ., Kazan (2012), pp. 34–42.

  22. S. A. Isaev and M. E. Gul′tsova, Numerical simulation of the turbulent water flow and the convective heat exchange in a narrow channel with a trench and a spherical dimple. Comparison of the boundary conditions T = const and Q = const, Tepl. Protsessy Tekhn., No. 6, 242–246 (2013).

  23. S. A. Isaev, P. A. Baranov, Yu. V. Zhukova, A. E. Usachov, and V. B. Kharchenko, Correction of the shear-stress-transfer model with account of the curvature of streamlines in calculating separated flows of an incompressible viscous fluid, J. Eng. Phys. Thermophys., 87, Issue 4, 1002–1015 (2014).

    Article  Google Scholar 

  24. S. A. Isaev, P. A. Baranov, and A. E. Usachov, Multiblock Computational Technologies in the VP2/3 Package on Aerothermodynamics [in Russian], LAP LAMBERT Academic Publishing, Saarbrucken (2013).

  25. S. A. Isaev, A. I. Leontiev, A. V. Shchelchkov, and M. E. Gul′tsova, Reconstruction of the vortex-jet structure of the separation turbulent flow in a spherical dimple on the wall of a narrow channel with increase in the depth of the dimple and intensification of the secondary flow in it, J. Eng. Phys. Thermophys., 88, Issue 5, 1304–1308 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Isaev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 5, pp. 1195–1210, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, S.A., Leontiev, A.I., Baranov, P.A. et al. Numerical Simulation of the Intensification of the Heat Exchange in a Plane-Parallel Channel with a Cylindrical Shallow Dimple on the Heated Wall. J Eng Phys Thermophy 89, 1186–1201 (2016). https://doi.org/10.1007/s10891-016-1482-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1482-9

Keywords

Navigation