Skip to main content
Log in

Analysis of the Anomalous Intensification of a Separate Flow and Heat Transfer in a Stabilized Section of a Narrow Channel with Single-Row, Inclined, Oval-Trench Dimples with the Use of Various Grids and Turbulence Models

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

In this paper, we analyze the intensification of the separated flow and heat transfer in single-row, oval-trench dimples with a 45° incline on the heated wall of a narrow channel in the stabilization section of a turbulent flow at Re = 104. Anomalously high velocities of the return and secondary flows (on the order of the average mass velocity in the channel), as well as in the entrance part of the dimples, and a multiple excess of the absolute values ​​of negative friction (4.5 times) and heat fluxes (five times) over the friction and Nusselt number on the heated wall of a plane-parallel smooth channel were found. The connection of this phenomenon with the total pressure difference between the close zones of flow deceleration on the windward slope of the dimple and rarefaction at the place of generation of a tornado-like vortex structure was established. The uncertainties in numerical predictions with the use of various grids and semi-empirical turbulence models in the StarCCM+ and VP2/3 packages are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Vikhrevye tekhnologii dlya energetiki (Vortex Technologies for Power Engineering), Leontiev, A.I., Ed., Moscow: Mosk. Energ. Inst., 2005.

    Google Scholar 

  2. Rashidi, S., Hormozi, F., Sunden, B., and Mahian, O., Appl. Energy, 2019, vol. 259, p. 1491.

    Article  Google Scholar 

  3. Isaev, S.A., Schelchkov, A.V., Leontiev, A.I., Gortyshov, Yu.F., Baranov, P.A., and Popov, I.A., Int. J. Heat Mass Transfer, 2017, vol. 109, p. 40.

    Article  Google Scholar 

  4. Isaev, S., Leontiev, A., Chudnovsky, Y., and Popov, I., J. Enhanced Heat Transfer, 2018, vol. 25, no. 6, p. 579.

    Article  Google Scholar 

  5. Isaev, S., Leontiev, A., Chudnovsky, Y., Nikushchenko, D., Popov, I., and Sudakov, A., Energies, 2019, vol. 12, no. 7, 1296.

    Article  Google Scholar 

  6. Isaev, S.A., Leont’ev, A.I., Kornev, N.V., Hassel, E., and Chudnovskii, Ya.P., High Temp., 2015, vol. 53, no. 3, p. 375.

    Article  Google Scholar 

  7. Isaev, S.A., Leont’ev, A.I., Mil’man, O.O., Sudakov, A.G., Usachov, A.E., and Gul’tsova, M.E., J. Eng. Phys. Thernophys., 2018, vol. 91, no. 4, p. 963.

    Article  Google Scholar 

  8. Isaev, S.A., Leontiev, A.I., Milman, O.O., Popov, I.A., and Sudakov, A.G., Int. J. Heat Mass Transfer, 2019, vol. 134, p. 338.

    Article  Google Scholar 

  9. Isaev, S., Gritckevich, M., Leontiev, A., and Popov, I., Acta Astronaut., 2019, vol. 163, part A, p. 202.

  10. Isaev, S.A., Gritskevich, M.S., Leontiev, A.I., Popov, I.A., and Sudakov, A.G., High Temp., 2019, vol. 57, no. 5, p. 771.

    Article  Google Scholar 

  11. Isaev, S.A., Gritskevich, M.S., Leontyev, A.I., Mil’man, O.O., and Nikushchenko, D.V., Thermophys. Aeromech., 2019, vol. 26, no. 5, p. 651.

    Article  ADS  Google Scholar 

  12. Isaev, S.A., Gritckevich, M.S., Leontiev, A.I., Milman, O.O., and Nikushchenko, D.V., Int. J. Heat Mass Transfer, 2019, vol. 145, 118737.

    Article  Google Scholar 

  13. Isaev, S.A., Kornev, N.V., Leontiev, A.I., and Hassel, E., Int. J. Heat Mass Transfer, 2010, vol. 53, nos. 1–3, p. 178.

    Article  Google Scholar 

  14. Isaev, S.A., Baranov, P.A., and Usachov, A.E., Mnogoblochnye vychislitel’nye tekhnologii v pakete VP2/3 po aerotermodinamike (Multi-unit Computing Technologies in the VP2/3 Package for Aerothermodynamics), Saarbrüken: LAP, 2013.

  15. Isaev, S., Baranov, P., Popov, I., Sudakov, A., Usachov, A., Guvernyuk, S., Sinyavin, A., Chulyunin, A., Mazo, A., Demidov, D., Dekterev, A., Gavrilov, A., and Shebelev, A., Comput. Fluids, 2019, vol. 188, p. 1.

    Article  MathSciNet  Google Scholar 

  16. Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z.D., and Zhu, J., Comput. Fluids, 1995, vol. 24, no. 3, p. 227.

    Article  Google Scholar 

  17. Wolfstein, M., Int. J. Heat Mass Transfer, 1969, vol. 12, p. 301.

    Article  Google Scholar 

  18. Durbin, P.A., Int. J. Heat Fluid Flow, 1996, vol. 17, p. 89.

    Article  Google Scholar 

  19. Spalart, P.R. and Allmaras, S.R., A one-equation turbulence model for aerodynamic Flows, AIAA-92-0439, 1992.

  20. Dacles-Mariani, J., Zilliac, G., Chow, J.S., and Bradshaw, P., AIAA J., 1995, vol. 33, no. 9, p. 1561.

    Article  ADS  Google Scholar 

  21. Venkatakrishnan, V., J. Comput. Phys., 1995, vol. 118, no. 1, p. 120.

    Article  ADS  Google Scholar 

  22. Weiss, J.M., Maruszewski, J.P., and Smith, W.A., AIAA J., 1999, vol. 37, no. 1, p. 29.

    Article  ADS  Google Scholar 

  23. Terekhov, V., Kalinina, S., and Mshvidobadze, Yu., J. Enhanced Heat Transfer, 1997, vol. 4, p. 131.

    Article  Google Scholar 

  24. Abo Amsha, K., Craft, T.J., and Iacovides, H., Aeronaut. J., 2017, vol. 121, no. 1242, p. 1066.

    Article  Google Scholar 

  25. Kwon, H.G., Hwang, S.D., and Cho, H.H., Int. J. Heat Mass Transfer, 2011, vol. 54, p. 1071.

    Article  Google Scholar 

  26. Rao, Y., Li, B., and Feng, Y., Exp. Therm. Fluid Sci., 2015, vol. 61, p. 201.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 19-19-00259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Isaev.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, S.A., Chulyunin, A.Y., Nikushchenko, D.V. et al. Analysis of the Anomalous Intensification of a Separate Flow and Heat Transfer in a Stabilized Section of a Narrow Channel with Single-Row, Inclined, Oval-Trench Dimples with the Use of Various Grids and Turbulence Models. High Temp 59, 106–114 (2021). https://doi.org/10.1134/S0018151X21010041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21010041

Navigation