Skip to main content
Log in

Magnetohydrodynamic transient flow through a porous medium bounded by a hot vertical plate in the presence of radiation: a theoretical analysis

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The transient magnetohydrodynamic free convective flow of a viscous, incompressible, electrically conducting, gray, absorbing–emitting, but non-scattering, optically thick fluid medium which occupies a semi-infinite porous region adjacent to an infinite hot vertical plate moving with a constant velocity is analyzed. A uniform magnetic field is assumed to be applied transversely to the flow. The Darcian viscous flow model for the porous medium is used. The momentum and thermal boundary-layer equations under physically realistic boundary conditions are solved through the use of the Laplace transform technique. The influence of the characteristic parameters of the problem on the velocity, temperature, and shear stress is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Q. Li and R. He, Computational modeling of electrodynamic and transport phenomena in materials processing systems, Int. J. Appl. Electromagn. Mech., 14, 449–466 (2002).

    Google Scholar 

  2. T. Ando, K. Ueno, S. Taniguchi, and T. Takagi, Induction pump for high-temperature molten metals using rotating twisted magnetic field: Thrust measurement experiment with solid conductors, IEEE Trans. Magn., 38, 1789–1783 (2001).

    Article  Google Scholar 

  3. V. Bojarevics and K. Pericleous, Liquid metal induction heating modeling for cold crucible applications, Appl. Math. Model., 22, 873–882 (1998).

    Article  Google Scholar 

  4. D. J. Ivanovic, Unsteady incompressible magnetohydrodynamic boundary layer on porous aerofoil in high accelerating fluid flow, Theor. Appl. Mech., 27, 87–102 (2002).

    Article  MATH  Google Scholar 

  5. J. Zueco and O. Anwar Bég, Network numerical analysis of hydromagnetic squeeze film flow dynamics between two parallel rotating disks with induced magnetic field effects, Tribol. Int., 43, 532–543 (2010).

    Article  Google Scholar 

  6. S. L. Chen, H. K. Ma, and D. Y. Chen, Radiation blockage by the interaction of thermal radiation with conduction and convection in the combustion of condensed fuels, Int. Commun. Heat Mass Transf., 20, 145–157 (1993).

    Article  MathSciNet  Google Scholar 

  7. K. S. Reddy and N. S. Kumar, Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish, Int. J. Therm. Sci., 47, 1647–1657 (2008).

    Article  Google Scholar 

  8. S. A. Gandjalikhan Nassab and M. Maramisaran, Transient numerical analysis of a multi-layered porous heat exchanger including gas radiation effects, Int. J. Therm. Sci., 48, 1586–1595 (2009).

    Article  Google Scholar 

  9. S. P. Obidina and M. N. Kiseleva, Production of glass with high radiation absorption in the range 0.9–1.2 μm, Glass Ceram., 37, 376–378 (1980).

    Article  Google Scholar 

  10. A. J. Saladino and R. C. Farmer, Radiation/convection coupling in rocket motor and plume analysis, Final Report, SECA Inc., Huntsville, Alabama, USA (1993).

  11. H. Gedda, J. Powell, G. Wahlström, W.-B. Li, H. Engström, and C. Magnusson, Energy redistribution during CO2 laser cladding, J. Laser Appl., 14, 78–82 (2002).

    Article  Google Scholar 

  12. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, McGraw-Hill, New York (1972).

    Google Scholar 

  13. M. A. Hossain, K. Khanafer, and K. Vafai, The effect of radiation on free convection flow of fluid with variable viscosity from a porous vertical plate, Int. J. Thermal Sci., 40, 115–124 (2001).

    Article  Google Scholar 

  14. H. S. Takhar, O. A. Bég, A. J. Chamkha, D. Filip, and I. Pop, Mixed radiation–convection boundary layer flow of an optically-dense fluid along a vertical plate in a non-Darcy porous medium, Int. J. Appl. Mech. Eng., 8, No. 3, 483–496 (2003).

    MATH  Google Scholar 

  15. A. J. Chamkha, H. S. Takhar, and O. A. Bég, Radiative free convective non-Newtonian fluid flow past a wedge embedded in a porous medium, Int. J. Fluid Mech. Res., 31, 101–115 (2004).

    Article  Google Scholar 

  16. O. D. Makinde, Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate, Int. Commun. Heat Mass Transfer, 32, 1411–1419 (2005).

    Article  Google Scholar 

  17. M. M. Molla and M. A. Hossain, Radiation effect on mixed convection laminar flow along a vertical wavy surface, Int. J. Therm. Sci., 46, 926–935 (2007).

    Article  Google Scholar 

  18. S. K. Ghosh and O. A. Bég, Theoretical analysis of radiative effects on transient free convection heat transfer past a hot vertical surface in porous media, Nonlinear Anal.: Model. Control, 13, No. 4, 419–432 (2008).

    MATH  Google Scholar 

  19. O. A. Bég, J. Zueco, T. A. Bég, H. S. Takhar, and E. Kahya, NSM analysis of time-dependent nonlinear buoyancy-driven double-diffusive radiative convection flow in non-Darcy geological porous media, Acta Mech., 202, 181–204 (2009).

    Article  MATH  Google Scholar 

  20. J. Zueco and O. A. Bég, Network simulation solutions for laminar radiating dissipative magnetogasdynamic heat transfer over a wedge in non-Darcian porous regime, Math. Comput. Model., 50, 439–452 (2009).

    Article  MATH  Google Scholar 

  21. M. A. Hossain and H. S. Takhar, Radiation effects on mixed convection along a vertical plate with uniform surface temperature, Heat Mass Transfer, 31, 243–248 (1996).

    Article  Google Scholar 

  22. A. A. Mohammadein, M. A. Mansour, S. M. El Gaied, and R. S. R. Gorla, Radiative effect on natural convection flows in porous media, Transport Porous Media, 32, No. 3, 263–283 (1998).

    Article  Google Scholar 

  23. H. S. Takhar, O. A. Bég, A. J. Chamkha, D. Filip, and I. Pop, Mixed radiation-convection boundary layer flow of an optically dense fluid along a vertical flat plate in a non-Darcy porous medium, Int. J. Appl. Mech. Eng., 8, 483–496 (2003).

    MATH  Google Scholar 

  24. A. J. Chamkha, H. S. Takhar, and O. A. Bég, Radiative free convective non-Newtonian fluid flow past a wedge embedded in a porous medium, Int. J. Fluid Mech. Res., 31, 101–115 (2004).

    Article  Google Scholar 

  25. P. Ganesan, P. Loganathan, and V. M. Soundalgekar, Radiation effects on flow past an impulsively started plate, Int. J. Appl. Mech. Eng., 6, No. 3, 719–730 (2001).

    MATH  Google Scholar 

  26. S. K. Ghosh and I. Pop, Thermal radiation of an optically thin gray gas in the presence of indirect natural convection, Int. J. Fluid Mech. Res., 34, No. 6, 515–520 (2007).

    Article  Google Scholar 

  27. A. Raptis and C. Perdikis, Unsteady flow through a highly porous medium in the presence of radiation, Transport Porous Media, 57, No. 2, 171–179 (2004).

    Article  Google Scholar 

  28. S. Ahmed and H. Deka, Free convective flow in a vertical channel through a porous medium with heat transfer, Int. J. Appl. Math., 21, No. 4, 671–684 (2008).

    MathSciNet  MATH  Google Scholar 

  29. S. Ahmed, Three-dimensional channel flow through a porous medium, Bull. Calcutta Math. Soc., 101, No. 5, 503–514 (2009).

    MathSciNet  MATH  Google Scholar 

  30. S. Ahmed and J. Zueco, Modeling of heat and mass transfer in a rotating vertical porous channel with Hall current, Chem. Eng. Commun., 198, No. 10, 1294–1308 (2011).

    Article  Google Scholar 

  31. S. Ahmed, Transient three-dimensional flow through a porous medium with transverse permeability oscillating with time, Emirate J. Eng. Res., 13, 11–17 (2008).

    Google Scholar 

  32. S. Ahmed, Free convective transient three-dimensional flow through a porous medium oscillating with time in presence of periodic suction velocity, Int. J. Appl. Math. Mech., 6, 1–16 (2010).

    Google Scholar 

  33. S. Ahmed, Free and forced convective MHD oscillatory flows over an infinite porous surface in an oscillating free stream, Latin Am. J. Appl. Res., 40, 167–173 (2010).

    Google Scholar 

  34. A. Raptis and C. V. Massalas, Magnetohydrodynamic flow past a plate in the presence of radiation, Heat Mass Transf., 34, 107–109 (1998).

    Article  Google Scholar 

  35. A. J. Chamkha, Thermal radiation and buoyancy effects on hydrodynamic flow over an accelerated permeable surface with heat source and sink, Int. J. Eng. Sci., 38, No. 15, 1699–1712 (2000).

    Article  MATH  Google Scholar 

  36. C. Perdikis and E. Raptis, Unsteady MHD flow in the presence of radiation, Int. J. Appl. Mech. Eng., 11, No. 2, 383–390 (2003).

    Google Scholar 

  37. S. Ahmed, Induced magnetic field with radiating fluid over a porous vertical plate: Analytical study, J. Nav. Architect. Mar. Eng., 7, No. 2, 83–94 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahin Ahmed.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 86, No. 1, pp. 31–39, January–February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S., Kalita, K. Magnetohydrodynamic transient flow through a porous medium bounded by a hot vertical plate in the presence of radiation: a theoretical analysis. J Eng Phys Thermophy 86, 30–39 (2013). https://doi.org/10.1007/s10891-013-0801-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-013-0801-7

Keywords

Navigation