Skip to main content
Log in

Nanostructural modification of an Al–C–Ti coating on alloy AZ91D under the multipulse action of Nd:YAG and Ng-glass lasers

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Experimental results on the nanostructural modification of an Al–C–Ti coating on magnesium alloy AZ91D under the multipulse action of Nd:YAG lasers (λ = 1064 nm, τ = 20 ns, and E = 200 mJ) and Nd-glass lasers (λ = 1060 nm, τ = 85 ns, and E = 2 J) are given. It is shown that the formation of the found nanocrystalline coating structure with a grain size of 35 to 400 nm involves the process of background deposition of ablated particles and condensed clusters formed in the plasma plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Coedzimo, Magnesium alloys today and in future, Metals Technol., No 1, 40–42 (2001).

  2. http://www.members.tripod.com/mg/asm prop.htm.

  3. M. S. Trtica, B. M. Gaković T. M. Nenadović and M. M. Mitrović , Surface modification of stainless steel by TEA CO2-laser, Appl. Surf. Sci., 177, 48–57 (2001).

    Article  Google Scholar 

  4. G. S. Romanov and V. K. Pustovalov, Scattering of a substance from an intensely evaporating metal surface, Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, No. 4, 84–89 (1967).

  5. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Action of High-Power Radiation on Metals [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  6. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and of High-Temperature Phenomena [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  7. A. Pereira, P. Delaporte, M. Sentis, W. Marine, A. L. Thomann, and C. Boulmer-Leborgne, Optical and morphological investigation of backward deposited layer induced by laser ablation of steel in ambient air, J. Appl. Phys., 98, 064902-1–064902-8 (2005).

    Article  Google Scholar 

  8. W. Marine, L. Patrone, B. Luk’yanchuk, and M. Sentis, Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation, Appl. Surf. Sci., 154, 345–352 (2000).

    Article  Google Scholar 

  9. T. E. Itina, M. Sentis, and W. Marine, Synthesis of nanostructures by nanosecond laser ablation: direct simulation Monte carlo modelling, Appl. Surf. Sci., 252, Issue 13, 4433–4438 (2006).

    Article  Google Scholar 

  10. J. J. Lin, S. Mahmood, T. L. Tan, S. V. Springham, P. Lee, and R. S. Rawat, Backward plume deposition as a novel technique for high deposition rate for nanoclusters synthesis, Nanotechnology, 18, 115617-1–115617-5 (2007).

    Google Scholar 

  11. S. I. Anisimov and B. S. Luk’yanchuk, Selected problems of the theory of laser ablation, Usp. Fiz. Nauk, 172, No. 3, 301–333 (2002).

    Article  Google Scholar 

  12. T. E. Itina, K. Gouriet, L. V. Zhigilei, S. Noël, J. Hermann, and M. Sentis, Mechanism of small clusters production by short and ultra-short laser ablation, Appl. Surf. Sci., 253, Issue 19, 7656–7661 (2007).

    Article  Google Scholar 

  13. S. Amaruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, Laser ablation of nickel in vacuum, J. Appl. Phys. D, 40, 331–340 (2007).

    Article  Google Scholar 

  14. Q. Q. Xie, Z. X. Guo, J. D. Hu, A. N. Chumakov, and N. A. Bosak, Formation of nanostructures in Al–C–Ti coating irradiated by Nd:YAG pulse laser, in: Proc. V Int. Conf. on Plasma Physics and Plasma Technology, Contributed Papers, Vol. II, Minsk, Belarus, September 18–22, 2006, pp. 487–490.

  15. B. Luk’yanchuk, W. Marine, and S. Anisimov, Condensation of vapor and nanoclusters formation within the vapor plume, produced by ns-laser ablation of Si, Laser Phys., 8, 291–302 (1998).

    Google Scholar 

  16. B. Luk’yanchuk, W. Marine, S. I. Anisimov, and G. A. Simakina, Condensation of vapor and nanoclusters formation within the vapor produced by nanosecond laser ablation of Si, Ge and Ñ, Proc. SPIE, 3618, 434–452 (1999).

    Article  Google Scholar 

  17. A. V. Gusarov, A. V. Gnedovets, and I. Smurov, Gas dynamics of laser ablation: influence of ambient atmosphere, J. Appl. Phys., 88, 4352–4364 (2000).

    Article  Google Scholar 

  18. T. Ohkubo, M. Kuwata, B. Luk’yànchuk, and T. Yabe, Numerical analysis of nanocluster formation within ns-laser ablation plume, Appl. Phys. A, 77, 271–275 (2003).

    Google Scholar 

  19. Y. H. Liu, J. D. Hu, L. Zhao, Z. X. Guo, A. N. Chumakov, and N. A. Bosak, Accumulation morphology on the surface of stainless steel irradiated by a nanosecond Nd:YAG pulsed laser, Optics Laser Technol., 42, 647–652 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Chumakov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 3, pp. 524–530, May–June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chumakov, A.N., Bereza, N.A., Hu, J.D. et al. Nanostructural modification of an Al–C–Ti coating on alloy AZ91D under the multipulse action of Nd:YAG and Ng-glass lasers. J Eng Phys Thermophy 84, 567–573 (2011). https://doi.org/10.1007/s10891-011-0505-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0505-9

Keywords

Navigation