Skip to main content
Log in

Deposition of cathode carbon films in the plasma of a low-current gas discharge at atmospheric pressure

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Plasma-chemical deposition of carbon films is carried out under the conditions of an atmospheric-pressure dc discharge from a mixture of hydrocarbons (methane and butane–propane) with helium on substrates (Ni and Cu) that serve as the cathode in the process of discharge. The formation of predominantly disordered films from graphite crystallites is observed at small deposition times. An array of carbon nanotubes coated with structured carbon is formed, as the duration of deposition increases; layers of graphitized scales are formed along the film’s edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Anishchik, V. E. Borisenko, S. A. Zhdanok, N. K. Tolochko, and V. M. Fedosyuk, Nanomaterials and Nanotechnologies [in Russian], Izd. Tsentr BGU, Minsk (2008).

    Google Scholar 

  2. P. A. Tesner, Formation of Carbon from Gas-Phase Hydrocarbons [Russian translation], Khimiya, Moscow (1972).

    Google Scholar 

  3. V. A. Likholobov, V. B. Fenelonov, L. G. Okkel, O. V. Goncharova, L. B. Avdeeva, V. I. Zaikovskii, G. G. Kuvshinov, V. A. Semikolenov, V. K. Duplyakin, O. N. Baklanova, and G. V. Plaksin, New carbon-carbonaceous composites for catalysis and adsorption, React. Kinet. Catal. Lett., 54, No. 2, 381–411 (1995).

    Article  Google Scholar 

  4. A. A. Zolotukhin, A. N. Obraztsov, A. P. Volkov, and A. O. Ustinov, Formation of nanocarbon film materials in a gas-discharge plasma, Zh. Éksp. Teor. Fiz., 124, No. 6, 1291–1297 (2003).

    Google Scholar 

  5. S. A. Zhdanok, S. V. Gorbatov, A. A. Mikhailov, F. V. Plevako, K. F. Plevako, S. V. Shushkov, V. P. Savenko, A. L. Belanovich, G. L. Shchukin, and D. V. Sviridov, Catalytic synthesis of carbon nanotubes in pulsed barrier discharge plasma, Inzh.-Fiz. Zh., 80, No. 6, 44–48 (2007).

    Google Scholar 

  6. S. A. Zhdanok, S. V. Gorbatov, A. A. Mikhailov, F. V. Plevako, K. F. Plevako, S. V. Shushkov, E. V. Skorb, V. G. Sokolov, T. V. Gaevskaya, and D. V. Sviridov, Low-temperature plasmachemical synthesis of carbon nanotubes on nickel patterns obtained by the photocatalytic-lithography method, Inzh.-Fiz. Zh., 81, No. 2, 203–205 (2008).

    Google Scholar 

  7. S. A. Zhdanok, I. F. Buyakov, A. V. Krauklis, V. M. Volzhankin, K. O. Borisevich, and P. P. Samtsov, Formation of carbon nanostructures in the decomposition of methane in the plasma of a high-voltage atmosphericpressure discharge, Inzh.-Fiz. Zh., 81, No. 4, 617–620 (2008).

    Google Scholar 

  8. S. A. Zhdanok, I. F. Buyakov, A. V. Krauklis, and K. O. Borisevich, On the formation of carbon nanostructures on the steel surface of a reactor as a result of the decomposition of hydrocarbons in the low-temperature plasma. 1. Experimental setup, determination of basic mechanisms, estimation of the production rate, Inzh.-Fiz. Zh., 82, No. 3, 413–419 (2009).

    Google Scholar 

  9. S. A. Zhdanok, I. F. Buyakov, A. V. Krauklis, and K. O. Borisevich, On the formation of carbon nanostructures on the steel surface of a reactor as a result of the decomposition of hydrocarbons in the low-temperature plasma. 2. Modernization of the experimental setup, search for optimum operating conditions, determination of additional controlling factors of the process, Inzh.-Fiz. Zh., 82, No. 3, 420–424 (2009).

    Google Scholar 

  10. S. A. Zhdanok, M. A. Silenkov, and S. V. Shushkov, Effect of glow discharge at atmospheric pressure on the metal surface, Proc. Fourth Int. School-Seminar on Nonequilibrium Processes and Their Applications, Minsk (1998), pp. 101–104.

  11. Yu. P. Raizer, Gas-Discharge Physics [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  12. I. V. Zolotukhin, I. M. Golev, E. K. Belonogov, V. P. Ievlev, D. A. Derzhnev, and E. A. Markova, Structure and thermal emf of a nanotube carbon deposit obtained in an electric discharge plasma, Pis’ma Zh. Tekh. Fiz., 29, Issue 23, 84–90 (2003).

    Google Scholar 

  13. É. G. Rakov, Nanotubes and Fullerenes [in Russian], Logos, Moscow (2006).

    Google Scholar 

  14. S. S. Bukalov, L. A. Mikhalitsyn, Ya. V. Zubavichus, L. A. Leites, and Yu. N. Novikov, Investigation of the structure of graphites and some other SP2 carbon materials by the methods of Raman microspectroscopy and x-ray diffractometry, Ros. Khim. Zh., 50, No. 1, 83–91 (2006).

    Google Scholar 

  15. A. A. Volodin, Carbon Nanofibers and Nanotubes: Catalytic Synthesis, Structure, Properties, Author’s Abstract of Candidate’s Dissertation (in Physics and Mathematics), Chernogolovka (2006).

  16. O. M. Zhigalina, Electron Microscopy of Functionally Active Nanosized Materials for Micro- and Nanoelectronics, Author’s Abstract of Doctoral Dissertation (in Physics and Mathematics), Moscow (2010).

  17. C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects, Phys. Rev. Lett., 93, 147406 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Zhdanok.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal Vol. 84 No. 3 pp. 498–502 May–June 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhdanok, S.A., Krylov, I.S., Silenkov, M.A. et al. Deposition of cathode carbon films in the plasma of a low-current gas discharge at atmospheric pressure. J Eng Phys Thermophy 84, 540–545 (2011). https://doi.org/10.1007/s10891-011-0502-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0502-z

Keywords

Navigation