Skip to main content
Log in

Structure and Properties of CrAlSiC Films Deposited by the Vacuum-Plasma Technique under Various Conditions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

CrAlSiC films deposited under various conditions of carbon-plasma generation (PVD or PACVD) are investigated. A plasma source of cathodic-arc discharge with a Cr–Al–Si cathode and a source of pulsed cathodic-arc discharge with a graphite cathode are used for the deposition of a CrAlSiC(I) film. A plasma source of cathodic-arc discharge with a Cr–Al–Si cathode and a gas-discharge device for generating a non-self-sustaining discharge in an argon-acetylene mixture are applied for the deposition of a CrAlSiC(II) film. The sources work together in both processes. The film structure is investigated using electron microscopy and Raman spectroscopy. The hardness and elasticity modulus are determined by nanoindentation; the friction coefficient is tested with the reciprocating motion of a steel ball without lubrication. It is found that the condition of generating carbon plasma (graphite sputtering or destruction of acetylene) has a significant effect on the structure and properties of CrAlSiC. CrAlSiC(I) consists of an amorphous phase with inclusions of silicon-carbide nanograins 10–30 nm in size. On the surface there are protrusions with a size of 2–4 µm. These features provide a high hardness and low friction coefficient. No crystalline formations are found in the amorphous matrix of CrAlSiC(II). On the surface there are bubble-like formations up to 15 microns in size. This coating is inferior to CrAlSiC(I) in terms of hardness and resistance to friction. Under friction the film is destroyed by chipping fragments. CrAlSiC(I) can be recommended for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. Kumar, G. Natarajan, R. Pandian, A. Bahuguna, S. K. Srivastava, T. R. Ravindran, S. Rajagopalan, S. Dash, A. K. Tyagi, R. Dumpala, and M. S. Ramachandra Rao, Surf. Coat. Technol. 258, 557 (2014). https://doi.org/10.1016/j.surfcoat.2014.08.038

    Article  CAS  Google Scholar 

  2. A. B. Vladimirov, S. A. Plotnikov, I. Sh. Trakhtenberg, A. P. Rubshtein, and E. G. Volkova, Prot. Met. Phys. Chem. Surf. 51, 230 (2015). https://doi.org/7868/S0044185615020199

    Article  CAS  Google Scholar 

  3. I. Sh. Trakhtenberg, N. V. Gavrilov, D. R. Emlin, S. A. Plotnikov, A. B. Vladimirov, E. G. Volkova, and A. P. Rubshtein, Phys. Metals Metallogr. 115, 723 (2014). https://doi.org/10.1134/S0031918X14070102

    Article  Google Scholar 

  4. A. P. Rubshtein, A. B. Vladimirov, Yu. V. Korkh, Y. S. Ponosov, and S. A. Plotnikov, Surf. Coat. Technol. 309, 680 (2017). https://doi.org/10.1016/j.surfcoat.2016.11.020

    Article  CAS  Google Scholar 

  5. V. M. Finkel’, Physical Bases of Inhibition of Destruction (Metallurgiya, Moscow, 1977).

    Google Scholar 

  6. H. Gleiter, Acta Mater. 48, 1 (2000). https://doi.org/10.1016/S1359-6454(99)00285-2

    Article  CAS  Google Scholar 

  7. A. S. Vereshchaka and A. A. Vereshchaka, Uprochnyayushchie Tekhnol. Pokrytiya, No. 9, 9 (2005).

    Google Scholar 

  8. A. P. Rubshtein, K. Gao, A. B. Vladimirov, S. A. Plotnikov, B. Zhang, and J. Zhang, Surf. Coat. Technol. 377, 124912 (2019). https://doi.org/10.1016/j.surfcoat.2019.124912

    Article  CAS  Google Scholar 

  9. T. C. Fu and G. W. Li, Appl. Surf. Sci. 253, 1260 (2006). https://doi.org/10.1016/j.apsusc.2006.01.069

    Article  CAS  Google Scholar 

  10. A. P. Rubshtein, A. B. Vladimirov, and S. A. Plotnikov, Solid State Phenom. 279, 160 (2018). https://doi.org/10.4028/www.scietific.net/SSP.279.153

    Article  Google Scholar 

  11. A. P. Rubshtein, A. B. Vladimirov, and S. A. Plotnikov, J. Phys.: Conf. Ser. 1281, 12065 (2019). https://doi.org/10.1088/1742-6596/1281/1/012065

    Article  CAS  Google Scholar 

  12. J. L. Jiang, Q. Wang, H. Huang, Y. B. Wang, X. Zhang, and J. Y. Hao, Surf. Coat. Technol. 240, 419 (2014). https://doi.org/10.1016/j.surfcoat.2013.12.067

    Article  CAS  Google Scholar 

  13. M. Rybachuk and J. M. Bell, Thin Solid Films 515, 7855 (2007). https://doi.org/10.1016/j.tsf.2007.04.040

    Article  CAS  Google Scholar 

  14. P. A. Topolyanskii, S. A. Ermakov, N. A. Sosnin, and A. P. Topolyanskii, Metalloobrabotka, No. 4, 28 (2013).

  15. A. Leyland and A. Matthews, Wear 246, 1 (2000). https://doi.org/10.1016/S0043-1648(00)00488-9

    Article  CAS  Google Scholar 

  16. D. V. Shtanskii, S. A. Kulinich, E. A. Levashov, and J. J. Moore, Phys. Solid State. 45, 1177 (2003).

    Article  CAS  Google Scholar 

  17. A. P. Rubshtein, V. A. Zavalishin, A. B. Vladimirov, and S. A. Plotnikov, Vacuum Engineering and Technologies 2020: Proceedings of the 27th All-Russian Scientific and Technical Conference with International Participation, Ed. by D. K. Kostrina and S. A. Martsynyukova (LETI, St. Petersburg, 2020), p. 123. https://vtt.etu.ru/assets/files/sbornik_vtt-2020.pdf.

    Google Scholar 

Download references

Funding

The work was carried out within the framework of the state assignment of the Ministry of Education and Science of Russia (topic “Function” No. АААА-А19-119012990095-0, topic “Structure” No. АААА-А18-118020190116-6). Electron microscopic studies were performed at the OEM of the Center for Collective Use of the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Rubshtein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubshtein, A.P., Vladimirov, A.B., Plotnikov, S.A. et al. Structure and Properties of CrAlSiC Films Deposited by the Vacuum-Plasma Technique under Various Conditions. J. Surf. Investig. 15, 961–965 (2021). https://doi.org/10.1134/S1027451021050153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021050153

Keywords:

Navigation