Skip to main content
Log in

110 years of experiments on shock tubes

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A brief account of the history of development of shock tubes throughout the world, the USSR, and Belarus is given. The principle of operation of a shock tube and some results for high-temperature gasdynamics obtained on shock tubes in the past years are shown. In these studies, the role of Rem Ivanovich Soloukhin is noted as a pioneer of experiments on shock tubes at the G. M. Krzhizhanovskii Institute of Power Engineering (1953–1958), the Siberian Branch of the Academy of Sciences of the USSR (from 1959), and in Belarus (from 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Vieille, Sur les discontinuites produites par la détente brusque de gas comprimes, Comptes Rendus de l’Academie des Sciences de Paris, 129, 1228–1230 (1899).

    Google Scholar 

  2. P. Vieille, Etude sur les roles des discontinuites dans les phenomenes de propagation, Mémoire des Poudres et Saltpêtres, 10, 117–260 (1899).

    Google Scholar 

  3. P. H. Hugoniot, Mémoire sur la propagation du movement dans les corps et plus spécialement dans les gaz parfaits, le Partie, J. Ecole Polytech. Paris, 57, 3–97 (1887).

    Google Scholar 

  4. P. H. Hugoniot, Mémoire sur la propagation du movement dans les corps et plus spécialement dans les gaz parfaits, 2e Partie, J. Ecole Polytech. Paris, 58, l–125 (1889).

    Google Scholar 

  5. K. Kobes, Die Durchschlagsgeschwindigkeit bei den Luftsauge und Druckluft-bremsen, Zeitschrift des Osterreichischen Ingenieur und Architekten-Vereines, 62, 558–568 (1910).

    Google Scholar 

  6. H. Schardin, Bemerkungen zum Druckausgleichsvorgang in einer Rohrleitung, Phys. Zeits., 33, 60–64 (1932).

    Google Scholar 

  7. C. Cranz and H. Schardin, Kinematographie auf ruhendem Film und mit extrem hoher Bildfrequenz, Z. Phys., 56, 147–183 (1929).

    Article  Google Scholar 

  8. W. Payman, The detonation-wave in gaseous mixtures and the pre-detonation period, Proc. Roy. Soc., A120, 90–109 (1928).

    Google Scholar 

  9. W. Payman and D. W. Woodhead, Explosion waves and shock waves. Part I: The wave-speed camera and its application to the photography of bullets in flight, Proc. Roy. Soc., A132, 200–213 (1931).

    Google Scholar 

  10. W. Payman, D. W. Woodhead, and H. Titman, Explosion waves and shock waves. Part II: The shock wave and explosion products sent out by blasting detonators, Proc. Roy. Soc., A148, 604–622 (1935).

    Google Scholar 

  11. W. Payman and H. Titman, Explosion waves and shock waves. Part III: The initiation of detonation in mixtures of ethylene and oxygen and of carbon monoxide and oxygen, Proc. Roy. Soc., A152, 418–455 (1935).

    Google Scholar 

  12. W. Payman and W. C. F. Shepherd, Explosion waves and shock waves. Part IV: Quasi-detonation in mixtures of methane and air, Proc. Roy. Soc., A158, 348–367 (1937).

    Google Scholar 

  13. W. Payman and W. C. F. Shepherd, Explosion waves and shock waves. Part VI: The disturbance produced by bursting diaphragms with compressed air, Proc. Roy. Soc., A186, 243–321 (1946).

    Google Scholar 

  14. I. I. Glass and J. Gordon Hall, Shock tubes, in: Handbook of Supersonic Aerodynamics, Silver Spring, Maryland, USA (1958), Section 18.

  15. W. Bleakney, D. Weimer, and C. H. Fletcher, The shock tube — a facility for investigations in fluid dynamics, Rev. Sci. Inst., 20, No. 11, 807–815 (1949).

    Article  Google Scholar 

  16. W. Bleakney and A. H. Taub, Introduction of shock waves, Rev. Mod. Phys., 21, 584–594 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Hertzberg and A. Kantrowitz, Studies with an aerodynamically instrumented shock tubes, J. Appl. Phys., 21, 874–877 (1950).

    Article  Google Scholar 

  18. W. Bleakney, D. R. White, and W. C. Griffith, Measurement of diffraction of shock waves and resultant loading of structures, J. Appl. Mech., 17, No. 4, 439–445 (1950).

    Google Scholar 

  19. E. L. Resler, Lin Shao-Chi, and A. Kantrowitz, The production of high temperature gases in shock tubes, J. Appl. Phys., 23, 1390–1398 (1952).

    Article  Google Scholar 

  20. G. Lundquist, Shock wave formation in a shock tube, J. Appl. Phys., 23, 374–377 (1952).

    Article  Google Scholar 

  21. R. E. Duff, The interaction of a plane shock wave and a rough surface, J. Appl. Phys., 23, 1373–1377 (1952).

    Article  Google Scholar 

  22. I. I. Glass, An experimental determination of the speed of sound in gases from the head of a rarefaction wave, J. Aeronaut. Sci., 19, 286–298 (1952).

    Google Scholar 

  23. R. J. Emrich and C. W. Curtiss, Attenuation in the shock tube, J. Appl. Phys., 24, No. 3, 360–370 (1953).

    Article  Google Scholar 

  24. W. C. Griffith and W. Bleakney, Shock waves in gases, Am. J. Phys., 22, 597–612 (1954).

    Article  Google Scholar 

  25. O. Laporte and E. B. Turner, On the interaction of two plane shocks facing in the same direction, J. Appl. Phys., 25, 678–683 (1954).

    Article  Google Scholar 

  26. A. H. Taub, Determination of flows behind stationary and pseudo-stationary shocks, Ann. Math., 62, 300–325 (1955).

    Article  MathSciNet  Google Scholar 

  27. R. J. Emrich and D. B. Wheeler, Jr., Wall effects in shock tube flow, Phys. Fluids, 1, No. 1, 14–23 (1958).

    Article  Google Scholar 

  28. W. Bleakney and R. J. Emrich, The shock tube, in: (F. Goddard, Ed.), High Speed Aerodynamics and Jet Propulsion, Vol. 8, Sect. J, Princeton University Press., Princeton, New Jersey (1961), pp. 596–696.

  29. R. J. Emrich, Walker Bleakney and the development of the shock tube at Princeton, Shock Wave, 5, 337–339 (1996).

    Google Scholar 

  30. B. D. Henshall, On some aspects of the use of shock tubes in aerodynamic research, ARC Reports and Memoranda, No. 3044, University of Bristol, Department of Aeronautical Engineering (1957) (for Russian translation, see [70]).

  31. H. Schardin, Ein Beispiel zur Verwendung des Stosswellenrohres für Probleme der instationaren Gasdynamik, Z. Angew. Math. Phys., IXb, No. 5/6 (Sonderband), 606–621 (1958).

  32. Website of the International Institute of Shock Waves: http://www.iswi-online.org/archive.htm.

  33. G. Ben-Dor, O. Igra, and T. Elperin (Eds.), Handbook of Shock Waves, Vols. 1–3, Academic Press, New York (2001).

    Google Scholar 

  34. R. I. Soloukhin, Measurement of the pressure of finite-amplitude waves in water by piezoelectric sensors, in: Proc. 4th Scientific Conf. of the Young Scientists of the G. M. Krzhizhanovskii Institute of Power Engineering, USSR Academy of Sciences (1957).

  35. R. I. Soloukhin, Investigation of spinning detonation in a shock tube, in: Proc. 4th Scientific Conf. of the Young Scientists of the G. M. Krzhizhanovskii Institute of Power Engineering, USSR Academy of Sciences (1957).

  36. T. V. Bazhenova and R. I. Soloukhin (A. S. Predvoditelev, Ed.), Pressure Field Arising in Water on Electric Discharge. Physical Gasdynamics [Russian translation], Pergamon Press, London (1961).

  37. S. G. Zaitsev and R. I. Soloukhin, On the problem of ignition of an adiabatically heated gas mixture, Dokl. Akad. Nauk SSSR, 122, No. 6, 1039–1041 (1958).

    Google Scholar 

  38. S. A. Losev, Investigation of the process of oxygen dissociation behind a shock wave, Dokl. Akad. Nauk SSSR, 120, No. 6, 1291–1296 (1958).

    Google Scholar 

  39. S. A. Losev and N. A. Generalov, On measurement of gas temperature behind a shock wave, Prib. Tekh. Éksp., No. 5, 108–109 (1959).

  40. S. A. Losev and A. I. Osipov, Investigation of nonequilibrium phenomena in shock waves, Usp. Fiz. Nauk, 74, Issue 3, 393–434 (1961).

    Google Scholar 

  41. N. A. Generalov and S. A. Losev, Investigation of nonequilibrium phenomena behind a shock wave in air, Vestn. MGU, Ser. Fizika, Issue 2, 51–73 (1962).

  42. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  43. T. V. Bazhenova and R. I. Soloukhin, Gas ignition behind the shock waves, Proc. of the Seventh Int. Symposium on Combustion, Butterworths, London (1959), pp. 866–897.

  44. T. V. Bazhenova and L. G. Gvozdeva, Nonstationary Interaction of Shock Waves [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  45. V. V. Golub and T. V. Bazhenova, Pulsed Supersonic Jet Flows [in Russian], Nauka, Moscow (2008).

    Google Scholar 

  46. S. M. Kogarko, Investigation of pressure at the tube face in rapid nonstationary combustion, Zh. Tekh. Fiz., 38, No. 9, 1958–1969 (1958).

    Google Scholar 

  47. A. A. Borisov, S. M. Kogarko, and A. V. Lyubimov, On application of shock tubes to the investigation of chemical reactions, Prikl. Mekh. Tekh. Fiz., No. 3, 175–184 (1960).

  48. Yu. A. Dunaev, G. K. Tumakaev, and A. M. Shukhtin, Application of the Rozhdestvenskii hook method to investigation of gasdynamic processes in shock tubes, Zh. Tekh. Fiz., 31, Issue 9, 1119–1126 (1961).

    Google Scholar 

  49. R. I. Soloukhin and M. E. Topchiyan, Investigation of the train of spinning detonation, Dokl. Akad. Nauk SSSR, 127, No. 4, 602–606 (1959).

    Google Scholar 

  50. B. K. Kedrinskii and R. I. Soloukhin, Compression of a spherical gas cavity in water by a shock wave, Prikl. Mekh. Tekh. Fiz., No. 1, 27–29 (1961).

  51. M. I. Vorotnikova and R. I. Soloukhin, On the structure of flow in electric-discharge shock tubes, Prikl. Mekh. Tekh. Fiz., No. 5, 138–140 (1964).

  52. I. Sh. Model’, Measurement of high temperatures in strong shock waves in gases, Zh. Éksp. Teor. Fiz., 32, No. 4, 714–761 (1957).

  53. L. A. Vasil’ev, S. S. Semenov, and E. A. Tarantov, Investigation of physical processes in a shock tube by means of high-speed photography, Izv. Akad. Nauk SSSR, OTN, No. 11, 186–188 (1957).

    Google Scholar 

  54. V. V. Selivanov and I. Ya. Shlyapintokh, Thermodynamic properties of air in the case of thermal ionization and in shock waves, Zh. Khim. Fiz., 32, Issue 3, 670–696 (1958).

    Google Scholar 

  55. L. V. Al’tshuler, S. B. Kormer, A. A. Bakanova, and R. F. Trunin, Phase transitions in compression of water by strong shock waves, Dokl. Akad. Nauk SSSR, 121, Issue 1, 67–72 (1958).

    Google Scholar 

  56. S. R. Kholev and D. S. Poltavchenko, Acceleration of discharge plasma and production of strong shock waves in a chamber with coaxial electrodes, Dokl. Akad. Nauk SSSR, 131, No. 5, 1060–1064 (1960).

    Google Scholar 

  57. N. A. Sobolev, A. V. Potapov, V. F. Kitaeva, F. S. Faizullov, V. N. Alyamovskii, E. T. Antropov, and I. L. Isaev, Spectroscopic investigation of the state of a gas behind a shock wave, Izv. Akad. Nauk SSSR, Ser. Fizika B, Issue 22, No. 6, 730–736 (1958).

  58. F. S. Faizullov, N. A. Sobolev, and E. M. Kudryavtsev, Spectroscopic investigation of the state of a gas behind a shock wave, Opt. Spektrosk., 8, No. 5, 585–593; 8, No. 6, 761–768 (1960).

  59. E. I. Zababakhin, The phenomenon of infinite cumulation, in: Mechanics in the USSR in the Past 50 Years, in 2 vols., Vol. 2, Fluid Mechanics [in Russian], Nauka, Moscow (1970), pp. 343–442.

  60. K. I. Shchelkin, The theory of combustion and detonation, in: Mechanics in the USSR in the Past 50 Years, in 2 vols., Vol. 2, Fluid Mechanics [in Russian], Nauka, Moscow (1970), pp. 313–342.

  61. E. Mach und P. Salcher, Photographische Fixterung der durch Projectile in der Luft eingeleiteten Vorgange, Sitzungsb. Akad. Wiss. Wien, 95, 764–780 (1887).

    Google Scholar 

  62. A. S. Dubovik, Photographic Registration of Fast Processes [in Russian], Nauka, Moscow (1964).

    Google Scholar 

  63. Yu. E. Nesterikhin and R. I. Soloukhin, Methods of Fast Measuring in the Gasdynamics and Physics of Plasma [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  64. V. F. Klimkin, A. N. Papyrin, and R. I. Soloukhin, Optical Methods of Recording of Fast Processes [in Russian], Nauka, Novosibirsk (1980).

    Google Scholar 

  65. N. N. Yanenko, R. I. Soloukhin, A. N. Papyrin, and V. M. Fomin, Supersonic Two-Phase Flows under the Conditions of Velocity Nonuniformity of Particles [in Russian], Nauka, Sib. Otd., Novosibirsk (1980).

    Google Scholar 

  66. R. I. Soloukhin, Shock Waves and Detonation in Gases [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  67. R. I. Soloukhin, Physical investigations of gases with the aid of shock waves, Usp. Fiz. Nauk, 68, No. 3, 513–527 (1959)

    Google Scholar 

  68. T. V. Bazhenova, S. G. Zaitsev, I. M. Naboko, G. D. Salamandra, I. K. Sevast’yanova, and R. I. Soloukhin, Some Methods of Investigation of Fast Processes [in Russian], Izd. AN SSSR, Moscow (1960).

    Google Scholar 

  69. A. Ferri (Ed.), Fundamental Data Obtained from Shock-Tube Experiments, Pergamon Press, Oxford (1961).

    Google Scholar 

  70. Kh. A. Rakhmatullin and S. S. Semenov (Eds.), Shock Tubes [Russian translation], IL, Moscow (1962).

  71. R. I. Soloukhin, Detonation waves in gases, Usp. Fiz. Nauk, 80, No. 4, 525–549 (1963).

    Google Scholar 

  72. A. G. Gaydon and I. R. Hurle, The Shock Tube in High Temperature Chemical Physics, Reinhold Publishing Corp., New York (1963).

    Google Scholar 

  73. Ya. B. Zeldovich and Yu. P. Raizer, The Physics of Shock Waves and of High-Temperature Phenomena [in Russian], 1st ed., Nauka, Moscow (1963); 2nd rev. augm. ed., Nauka, Moscow (1966).

  74. C. Brochet and R. I. Soloukhin, The development of instabilities in a shocked exothermic gas flow, Combustion and Flame, 18, No. 1 (1972).

  75. J. Brossard, N. Fomin, and R. Soloukhin, Shock tube ignition and detonation studies by resonance (10.6 μm) absorption in propane, J. Acta Astronautica, 6, 861–874 (1979).

    Article  Google Scholar 

  76. R. J. Emrich and R. I. Soloukhin, 3.39 micron resonance line absorption in shocked methane, Astronautica Acta, 17, No. 4 (1972).

    Google Scholar 

  77. R. Emrich, N. A. Fomin, O. G. Lysenko, S. A. Labuda, and R. I. Soloukhin, Transition of liquid carbon dioxide to gas-solid mixture, in: (W. Merzkirch, Ed.), Flow Visualization II, Hemisphere Publ. Corp., New York (1982), pp. 503–508.

  78. G. Dupre, C. Paillard, J. Combourieur, N. Fomin, and R. Soloukhin, Decomposition of hydrogen azide in shock waves, in: (C. E. Treanor and J. G. Hall, Eds.), Shock Tubes and Waves, State University of New York Press, New York (1982), pp. 626–634.

    Google Scholar 

  79. A. P. Zuev, B. K. Tkachenko, and N. A. Fomin, Thermal decomposition of HN3, N2O, CO2 behind shock waves, Khim. Fiz., No. 8, 1075–1085 (1982).

    Google Scholar 

  80. O. V. Achasov, N. N. Kudryavtsev, S. S. Novikov, R. I. Soloukhin, and N. A. Fomin, Diagnostics in Molecular Lasers [in Russian], Nauka i Tekhnika, Minsk (1985).

    Google Scholar 

  81. V. N. Kroshko, R. I. Soloukhin, and N. A. Fomin, Gasdynamic processes in producing inversion in shock tubes, Fiz. Goreniya Vzryva., 9, No. 3, 352–362 (1973).

    Google Scholar 

  82. N. A. Fomin and R. I. Soloukhin, Gasdynamic problems for optically inverse media, Revue de Physique Appliquee, 14, No. 2, 421–437 (1979).

    Article  Google Scholar 

  83. O. V. Achasov, S. A. Zhdanok, R. I. Soloukhin, and N. A. Fomin, Superequilibrium ionization in adiabatic expansion of a relaxing gas, Dokl. Akad. Nauk SSSR., 253, No. 6, 1373–1376 (1980).

    Google Scholar 

  84. O. V. Achasov, S. A. Zhdanok, D. S. Ragozin, R. I. Soloukhin, and N. A. Fomin, Associative ionization of diatomic molecules on adiabatic expansion in a supersonic flow, Zh. Éksp. Teor. Fiz., 81, Issue 2(8), 550–559 (1982).

    Google Scholar 

  85. R. I. Soloukhin and N. A. Fomin, Gasdynamic Mixed Flow Lasers [in Russian], Nauka i Tekhnika, Minsk (1984).

    Google Scholar 

  86. O. V. Achasov, P. A. Vityaz’, S. A. Labuda, S. V. Popko, S. Sivets, V. K. Sheleg, and N. A. Fomin, Porous mixers for gasdynamic lasers with selective thermal excitation, Inzh.-Fiz. Zh., 38, No. 6, 989–993 (1980).

    Google Scholar 

  87. O. V. Achasov, S. A. Labuda, O. G. Penyazkov, and N. A. Fomin, Laser with intracavity spatial filtration and synchronized tuning over generation spectrum, Zh. Prikl. Spektrosk., 49, No. 2, 210–216 (1988).

    Google Scholar 

  88. N. A. Fomin, Speckle Interferometry of Gasdynamic Flows [in Russian], Nauka i Tekhnika, Minsk (1989).

    Google Scholar 

  89. N. A. Fomin, Speckle Photography for Fluid Mechanics Measurements, Springer-Verlag, Berlin (1998).

    MATH  Google Scholar 

  90. N. Fomin, O. Penyazkov, and S. Zhdanok (Eds.), Physics of Shock Waves, Combustion, Detonation and Non-Equilibrium Processes, Minsk (2005), ISBN-985-6456-47-9.

  91. O. G. Martynenko and P. P. Khramtsov, Free-Convective Heat Transfer, Springer-Verlag, Berlin (2005).

    Google Scholar 

  92. N. Fomin, E. Lavinskaya, W. Merzkirch, and D. Vitkin, Turbulence microscale variation due to interaction with shock wave, Shock Waves, 10, 345–349 (2000).

    Article  Google Scholar 

  93. N. Fomin, E. Lavinskaya, and K. Takayama, Limited projection laser speckle tomography of complex flows, Optics and Lasers in Engineering, 44, Issues 3–4, 335–349 (2006).

    Article  Google Scholar 

  94. M. Sun and K. Takayama, A note of numerical simulation of vertical structures in shock diffraction, Shock Wave, 13, 25–32 (2003).

    Article  MATH  Google Scholar 

  95. I. A. Znamenskaya, D. F. Latfullin, A. E. Lutskii, I. V. Mursenkova, and N. N. Sysoev, Development of gasdynamic perturbations from the zone of a distributed surface creeping discharge, Zh. Tekh. Fiz., 77, Issue 5, 10–18 (2007).

    Google Scholar 

  96. T. V. Bazhenova, I. A. Znamenskaya, A. E. Lutskii, and I. V. Mursenkova, Investigation of the surface energy contribution to gas on initiation of a nanosecond distributed creeping discharge, Teplofiz. Vys. Temp., 46, No. 4, 580–587 (2007).

    Google Scholar 

  97. I. A. Znamenskaya, I. V. Mursenkova, D. M. Orlov, and N. N. Sysoev, Localization of pulsed energy contribution on initiation of a transverse surface discharge in a flow with a shock wave, Zh. Tekh. Fiz., 33, Issue 13, 72–77 (2007).

    Google Scholar 

  98. M. V. Doroshko, P. P. Khramtsov, O. G. Penyazkov, and I. A. Shikh, Measurements of admixture concentration fluctuation in a turbulent shear flow using an averaged Talbot-image, Experiments in Fluids, ISFV12, Special Issue, 44, No. 3, 461–468 (2008).

  99. A. J. Dean, O. G. Penyazkov, K. L. Sevruk, and B. Varatharajan, Autoignition of surrogate fuels at elevated temperatures and pressures, Proc. Comb. Inst., Issue 2, 2481–2488 (2007).

    Google Scholar 

  100. S. P. Rubnikovich and N. A. Fomin, Laser-Optical Methods of Diagnostics and Therapy in Stomatology [in Russian], ITMO im. A. V. Luikova NAN Belarusi, Minsk (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Fomin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 83, No. 6, pp. 1058–1071, November–December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomin, N.A. 110 years of experiments on shock tubes. J Eng Phys Thermophy 83, 1118–1135 (2010). https://doi.org/10.1007/s10891-010-0437-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0437-9

Keywords

Navigation