Skip to main content
Log in

Transfer properties of mixtures of rarefied neutral gases. Hydrogen–argon system

  • Miscellaneous
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A method is proposed for generalization of the transport properties of mixtures of rarefied gases on the basis of their particle-interaction potentials and relations of the molecular-kinetic theory. A simultaneous processing of data on the viscosity of a binary Ar–H2 mixture and its components as well as data on the concentrationdiffusion and thermal-diffusion coefficients of this mixture has been carried out by the weight method. The parameters of three functions of the Lennard-Jones (m–6) potential of interaction between the Ar atoms and H2 molecules in the indicated mixture were determined. Tables of reference data on the transport properties of the Ar–H2 mixture at a temperature of 200–2000 K and a concentration x(Ar) varying from 0 to 1 were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. O. Hirschfelder, Ch. F. Curtis, and R. B. Bird, Molecular Theory of Gases and Liquids [Russian translation], IL, Moscow (1961).

    Google Scholar 

  2. G. Maitland, M. Rigby, E. Smith, and W. A. Wakeham, Intermolecular Forces, Clarendon Press, Oxford (1981).

    Google Scholar 

  3. R. A. Aziz, Interatomic potentials for rare-gases, Springer Ser. Chem. Phys., No. 34, Berlin: SV (1984), pp. 6–86.

  4. GSSSD138-89. E. Fogel’, I. Millat, E. Bikch, V. A. Rabinovich, et al., Helium, Neon, Argon, Krypton, Xenon. Dynamic Viscosity at Atmospheric Pressure in the Range of Temperatures from Normal Boiling Points to 5000 K [in Russian], Izd. Standartov, Moscow (1992).

  5. J. J. Hurly and M. R. Moldover, Ab initio values of the thermophysical properties of helium as standards, J. Res. NIST, 105, No. 5, 667–688 (2000).

    Google Scholar 

  6. E. A. Mason and L. Monchick, Heat conductivity of polyatomic and polar gases, J. Chem. Phys., 36, No. 6, 1622–1639 (1962).

    Article  Google Scholar 

  7. L. Monchick, N. G. Pereira, and E. A. Mason, Heat conductivity of polyatomic and polar gas mixtures, J. Chem. Phys., 42, No. 9, 3241–3256 (1965).

    Article  Google Scholar 

  8. V. M. Zhdanov and M. Ya. Alievskii, Processes of Transfer and Relaxation in Molecular Gases [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  9. F. A. Gianturco, M. Venanzi, and A. S. Dickinson, Classical trajectory calculations of transport and relaxation properties for Ar–N2 mixtures, J. Chem. Phys., 93, No. 8, 5552–5562 (1990).

    Article  Google Scholar 

  10. J. D. Lambert, Vibrational and Rotational Relaxation in Gases, Clarendon Press, Oxford (1977).

    Google Scholar 

  11. A. V. Bogdanov, G. V. Dubrovskii, A. I. Osipov, and V. M. Strel’chenya, Rotational Relaxation in Gases and Plasma [in Russian], ÉAI, Moscow (1991).

    Google Scholar 

  12. J. Bzowski, E. A. Mason, and J. Kestin, On combinational rules for molecular van der Waals potential-well parameters, Int. J. Thermophys., 9, No. 1, 131–143 (1988).

    Article  Google Scholar 

  13. S. Weissman, S. C. Saxena, and E. A. Mason, Intermolecular forces from diffusion and thermal diffusion measurements, Phys. Fluids, 3, No. 4, 510–518 (1960).

    Article  Google Scholar 

  14. L. R. Fokin and N. A. Slavinskaya, Correlation of the thermophysical properties of rarefied gas mixtures in relation to Ar–Xe, Teplofiz. Vys. Temp., 25, No. 1, 46–51 (1987).

    Google Scholar 

  15. A. K. Barua, A. Manna, P. Mukhopadahyay, and A. Gupta, Relaxation effects and the thermal conductivity of polyatomic gases and gas mixtures, J. Phys. B., 3, No. 3, 619–635 (1970).

    Article  Google Scholar 

  16. Thermophysical Properties of Substances and Materials [in Russian], Issue 17, Izd. Standartov, Moscow (1982).

  17. N. D. Kosov, Molecular and Hydrodynamic Components of Diffusion in Gases, Doctoral Dissertation (in Physics and Mathematics), Kazakh University, Alma-Ata (1969).

  18. P. E. Suetin, Molecular Diffusion in Rarefied Gases, Doctoral Dissertation (in Physics and Mathematics), Ural Polytechnic Institute, Sverdlovsk (1969).

  19. L. S. Kotousov, Application of Methods of the Irreversible-Process Thermodynamics to the Analysis of the Thermal Functions of Mixing of Double Systems, Doctoral Dissertation (in Physics and Mathematics), Leningrad Polytechnic Institute, Leningrad (1970).

  20. A. F. Bogatyrev, Thermal Diffusion in Rarefied and Moderately Dense Gases, Doctoral Dissertation (in Physics and Mathematics), Kazakh State University, Alma-Ata (1986).

  21. L. I. Korlapov, Isothermal Diffusion of Gases, Doctoral Dissertation (in Physics and Mathematics), Kazakh State University, Alma-Ata (1983).

  22. A. N. Berezhnoi, Experimental Determination, Generalization and Prediction of the Characteristics of Molecular Mass Transfer in Gases, Doctoral Dissertation (in Engineering), Kazan’ State Institute of Chemical Technology (1989).

  23. Yu. I. Zhavrin, Isothermal Diffusion in Multicomponent Gas Mixtures, Doctoral Dissertation (in Physics and Mathematics), Kazakh State University, Almaty (1993).

  24. L. S. Kotousov, Thermal Diffusion — a Method to Investigate Nonideal Systems [in Russian], Nauka, Leningrad (1973).

    Google Scholar 

  25. A. G. Shashkov and T. N. Abramenko, Cross Effects in Gas Mixtures [in Russian], Nauka i Tekhnika, Minsk (1976).

    Google Scholar 

  26. T. N. Abramenko, A. F. Zolotukhina, and E. A. Shashkov, Thermal Diffusion in Gases [in Russian], Nauka i Tekhnika, Minsk (1982).

    Google Scholar 

  27. A. G. Shashkov, A. F. Zolotukhina, V. B. Vasilenko, Factor of Thermal Diffusion of Gas Mixtures [in Russian], Belorusskaya Nauka, Minsk (2007).

    Google Scholar 

  28. P. Dunlop, H. L. Robjohns, and C. M. Bignell, Diffusion and thermal diffusion in binary mixtures of hydrogen with noble gases, J. Chem. Phys., 86, No. 5, 2922–2926 (1987).

    Article  Google Scholar 

  29. T. R. Marrero and E. A. Mason, Gaseous diffusion coefficients, J. Phys. Chem. Ref. Data, 1, No. 1, 1–118 (1972).

    Article  Google Scholar 

  30. L. Andrussov, Diffusion, Landolt–Bernstein, Aufl. 6, Bd 2, T. 5a, Berlin: SV (1969), S. 513–565.

  31. N. B. Vargaftik, Handbook on the Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  32. N. B. Vargaftik, Y. K. Vinogradov, and V. S. Yargin, Handbook of Physical Properties of Liquids and Gases. Pure Substances and Mixtures, Begell House Inc., New York (1996).

  33. A. N. Berezhnoi and A. V. Semenov, Binary Diffusion Coefficients of Liquid Vapors in Gases, Begell House Inc., New York (1997).

    Google Scholar 

  34. J. Winkelmann, Diffusion in Gases, Liquids and Electrolytes, Landolt–Bornstein, New series, Gr. IV, Bd 15a, Berlin: SV (2007), S. 410–425.

  35. A. G. Morachevskii and I. B. Sladkov, Physicochemical Properties of Molecular Inorganic Compounds [in Russian], 2nd ed., Khimiya, St. Petersburg (1996).

    Google Scholar 

  36. K. M. Aref’ev, M. A. Guseva, and N. B. Balashova, Quantum Mechanics in Calculations of Transfer of Metal Vapors in Gases [in Russian], LGU, Leningrad (1990).

    Google Scholar 

  37. C. L. Yaws, Bu Li, and K. Y. Li, Diffusion coefficients in air, Handbook of Transport Property Data, Galf Publ., Houston (1995), pp. 113–140.

    Google Scholar 

  38. K. E. Grew and T. L. Ibbs, Thermal Diffusion in Gases [Russian translation], Gostekhizdat, Moscow (1956).

    Google Scholar 

  39. E. A. Mason, R. J. Munn, and F. Smith, Thermal diffusion in gases, Adv. in Atomic and Molecular Physics, 2, 33–91 (1966).

    Article  Google Scholar 

  40. L. V. Koblikova, System of standard reference data on the properties of substances and materials, in: Encyclopedia of Machine Building [in Russian], Vol. V-1, Mashinostroenie, Moscow (2002), pp. 58–73.

  41. E. M. Starovoitov and V. A. Mironov, Parameters of intermolecular potentials of gases, Deposited at ONIITÉKhIM, No. 308xp (1998), No. 361xp (1988), No. 367xp.

  42. L. P. Filippov and D. A. Tolstunov, On the Effective Potential of Interaction of Multiatomic Molecules and Prediction of the Properties of Liquids and Gases [in Russian], Izd. Standartov, Moscow (1982), Issue 16, pp. 89–100.

  43. S. S. Batsanov, Structural Chemistry. Facts and Dependences [in Russian], Dialog-MGU, Moscow (2000).

  44. M. P. Vukalovich and I. I. Novikov, Technical Thermodynamics [in Russian], GÉI, Moscow–Leningrad (1952).

  45. L. P. Filippov, Similarity of the Properties of Substances [in Russian], Izd. MGU, Moscow (1978).

    Google Scholar 

  46. K. S. Pitzer, The volumetric and thermodynamic properties of fluids, J. Amer. Chem. Soc., 55, July, 3427–3440 (1955).

    Article  Google Scholar 

  47. J. Kestin and E. A. Mason, Transport properties in gases. Comparison between theory and experiments, Transport Phenomena — 1973, AIP Conf., Ser. No. 11, 137–202 (1973).

  48. A. Boushehri, J. Kestin, and E. A. Mason, Equilibrium and transport properties of eleven polyatomic gases at low densities, J. Phys. Chem. Ref. Data, 16, No. 3, 445–456 (1987).

    Article  Google Scholar 

  49. A. Maghari, H. Behnejad, and F. Nematbakhsh, Direct determination of the intermolecular potential for N2−H2 from a viscosity correlation equation, J. Phys. Soc. Jpn., 68, No. 7, 2276–2280 (1999).

    Article  Google Scholar 

  50. A. F. Zolotukhina, M. V. Sagarda, and A. G. Shashkov, Use of the law of corresponding states to generalize the thermal diffusion factor of inert gas mixtures, Inzh.-Fiz. Zh., 48, No. 6, 966–971 (1985).

    Google Scholar 

  51. A. F. Zolotukhina, M. V. Sagarda, A. G. Shashkov, and I. P. Evmenova, Generalization of the thermal diffusion factor of mixtures of inert gases — Kr–Xe, Ar–Xe, Ne–Ar, Ar–Kr — on the basis of the theory of corresponding states, Inzh.-Fiz. Zh., 49, No. 5, 810–814 (1985)

    Google Scholar 

  52. A. F. Zolotukhina, Application of similarity theory to generalization of the factor of thermal diffusion of multiatomic gas mixtures, Inzh.-Fiz. Zh., 56, No. 4, 604–611 (1989).

    Google Scholar 

  53. A. G. Shashkov, A. F. Zolotukhina, and L. P. Fokin, Temperature dependence of the factor of thermal diffusion of the mixtures of gases with a polar component, in: Heat and Mass Transfer-2008, Collected Scientific papers, ITMO im. A. V. Lykova NAN Belarusi, Minsk (2009), pp. 321–326.

    Google Scholar 

  54. E. E. Makletsova, Investigation of the Dependence of the Thermodiffusion Separation of Some Binary Gas Mixtures on their Temperature and Concentration, Author’s Abstract of Candidate’s Dissertation (in Physics and Mathematics), Kazakh State University, Alma-Ata (1972).

  55. H. Wei, R. J. Le Roy, R. Wheatley, and W. Meath, A reliable new three-dimensional PES for H2–Kr, J. Chem. Phys., 122, 084321(17) (2005).

    Article  Google Scholar 

  56. R. A. Svehla, Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures, NASA TR R-132, Cleveland, Ohio (1962).

    Google Scholar 

  57. A. I. Kitaigorodskii, Molecular Crystals [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  58. B. E. Polling, J. M. Prausnitz, and J. P. O’Conell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York (2000).

    Google Scholar 

  59. V. E. Alemasov, A. F. Dregalin, A. P. Tishin, and V. A. Khudyakov, Thermodynamic and Thermophysical Properties of Fuel Combustion Products: Handbook [in Russian], in 9 vols., VINITI, Moscow (1971–1979).

  60. R. Kee, C. Dixon-Lewis, Y. Warnatz, et al., A FORTRAN computer code package for the evaluation of gasphase multicomponent transport properties, Rt. SAND 86-8246B (1998).

  61. L. Zarkova, I. Petkov, and P. Pirgov, An approach to the calculation of self-consistent thermophysical properties of scarcely examined heavy gaseous halides, J. Phys. B, 31, No. 4, 805–813 (1998).

    Article  Google Scholar 

  62. L. R. Fokin, L. Zarkova, and M. Damyanova, Potentials of interaction of nine quasispherical molecules in the database on the transport properties of gases, Teplofiz. Vys. Temp., 42, No. 6, 878–884 (2004).

    Google Scholar 

  63. A. Ern, A. S. Dickinson, and V. Vesovic, A compact formulation for multicomponent transport coefficients in gas mixtures, Chem. Phys., 310, No. 1/3, 311–319 (2005).

    Article  Google Scholar 

  64. N. A. Slavinskaya, I. A. Sokolova, and L. P. Fokin, Collision integrals for the Lennard-Jones (6–6) Potential, Mat. Modelling., 10, No. 5, 3–9 (1998).

    Google Scholar 

  65. M. Klein, H. J. M. Hanley, F. J. Smith, and P. Holland, Tables of collision integrals and 2VC for the (m, 6, 8) intermolecular potential function, NSRDS-NBS 47, Washington, D. C.: GPO (1974).

  66. L. R. Fokin, V. N. Popov, and A. N. Kalashnikov, Analytical representation of the collision integrals for the Lennard-Jones (m–6) potentials in the DB EPIDIF, Teplofiz. Vys. Temp., 37, No. 1, 49–55 (1999).

    Google Scholar 

  67. A. A. Aleksandrov, A. I. Ivanov, and A. B. Matveev, Applicability of molecular interaction potentials in viscosity calculation for steam, Inzh.-Fiz. Zh., 31, No. 2, 328–333 (1976).

    Google Scholar 

  68. A. N. Kalashnikov, System of Reference Data on Kinetic Coefficients for Calculation of the Processes of Transfer in the Gas-Air Circuit of a Boiler Plant, Author’s Abstract of Candidate’s Dissertation (in Engineering), OIVT RAN, Moscow (2001).

  69. L. R. Fokin and A. N. Kalashnikov, Transport properties of a mixture of rarefied N2–H2 gases in the Epitaxy-Diffusion database, Teplofiz. Vys. Temp., 47, No. 5, 675–687 (2009).

    Google Scholar 

  70. T. S. Storvick and E. A. Mason, Determination of diffusion coefficients from viscosity measurements, J. Chem. Phys., 45, No. 10, 3752–3754 (1966).

    Article  Google Scholar 

  71. L. R. Fokin, Problems of estimation of the validity of reference data on the physicochemical properties of substances, in: Nonformal Mathematical Models in Chemical Thermodynamics [in Russian], Nauka, Novosibirsk (1991), pp. 100–116.

    Google Scholar 

  72. M. Trautz und W. Ludewigs, VI Reibungsbestimmung anreinen Gasen durch direkte Messung und durch Solche an ihren Gemischen, Ann. Physik, 3, 409–428 (1929).

    Article  Google Scholar 

  73. M. Trautz und H. E. Binkele, VIII Reibung das H2, He, Ne, Ar und ihren binaren Gemische, Ann. Physik, 5, 561–570 (1930).

    Article  Google Scholar 

  74. J. van Lierde, Measurements of Thermal Diffusion and Viscosity of Certain Mixtures at Low and Very Low Temperatures, Amsterdam (1947).

  75. H. R. Heath, The viscosity of gas mixtures, Proc. Phys. Soc. (L), B 65, 5, 362–367 (1953).

    Article  Google Scholar 

  76. F. A. Guevara, B. B. McInteer, and W. E. Wageman, High-temperature viscosity ratios for H2, He, Ar and N2, Phys. Fluids, 12, 2, 2493–2505 (1969).

    Article  Google Scholar 

  77. A. A. Clifford, J. Kestin, and W. A. Wakeham, The viscosity of mixtures of hydrogen with three noble gases, Ber. Bunsenges., Phys. Chem., 85, 2, 385–388 (1981).

    Google Scholar 

  78. GSSSD R 233-87. A. D. Kozlov, V. M. Kuznetsov, and Yu. V. Mamonov, Normal hydrogen. Coefficient of dynamic viscosity and thermal conductivity at temperatures 14–1500 K and pressures from the state of a rarefied gas to 100 MPa, Deposited at VNIIKI No. 466–kk 88 (1988).

  79. E. F. May, R. F. Berg, and M. R. Moldover, Reference viscosities of H2, CH4, Ar, and Xe at low densities, Int. J. Thermophys., 28, No. 4, 1085–1110 (2007).

    Article  Google Scholar 

  80. L. Waldman, Die Temperaturerscheinungen bei der Diffusion in ruhenden Gasen und ihre mestechnische Anwendung, Z. Phys., 124, 1/2, 2–29 (1947).

    Google Scholar 

  81. R. A. Strehlow, The temperature dependence of the mutual diffusion coefficient for four gaseous systems, J. Chem. Phys., 21, No. 12, 2101–2106 (1953).

    Article  Google Scholar 

  82. R. Paul and I. B. Srivastava, Mutual diffusion of the gas pairs H2–Ne, H2–Ar, and H2–Xe at different temperatures, J. Chem. Phys., 35, No. 6, 1621–1624 (1961).

    Google Scholar 

  83. A. A. Westenberg and G. Frazier, Molecular diffusion studies in gases at high temperatures. V. Results for H2–Ar system, J. Chem. Phys., 36, No. 12, 3499–3500 (1962).

    Article  Google Scholar 

  84. B. A. Ivakin and P. E. Suetin, Investigation of the temperature dependence of the coefficient of mutual diffusion of gases, Zh. Tekh. Fiz., 34, No. 6, 1116–1124 (1964).

    Google Scholar 

  85. E. A. Mason, S. Weissman, and R. P. Wendt, Composition dependence of gaseous thermal diffusion factors and mutual diffusion coefficients, Phys. Fluids, 7, No. 2, 174–179 (1964).

    Article  Google Scholar 

  86. P. E. Suetin, A. É. Loiko, B. A. Kalinin, and Yu. F. Gerasimov, Measuring the mutual gas diffusion coefficient at low temperatures, Inzh.-Fiz. Zh., 19, No. 5, 933–935 (1970).

    Google Scholar 

  87. P. E. Suetin, B. A. Kalinin, and A. É. Loiko, Mutual diffusion of gases in the He–Ar, H2–He, H2–Ar systems, Zh. Tekh. Fiz., 40, No. 8, 1735–1743 (1970).

    Google Scholar 

  88. N. D. Kosov, L. I. Kurlapov, G. P. Martynova, and E. P. Solonitsyn, Concentration and temperature dependence of the diffusion coefficients of some gases, in: Heat and Mass Transfer, Vol. 7, ITMO AN BSSR, Minsk (1972), pp. 178–187.

    Google Scholar 

  89. A. É. Loiko, B. A. Kalinin, and P. E. Suetin, Diffusion coefficients of gases at liquid nitrogen temperature, in: Diffusion in Gases and Liquids, Kazakh State Univ., Alma-Ata (1972), pp. 63–65.

    Google Scholar 

  90. K. R. Harris, T. N. Bell, and P. J. Dunlop, The concentration dependences of the binary diffusion coefficients of the systems H2–Ne, D2–Ne, H2–N2, D2–N2, H2–Ar, and D2–Ar at 1 atm pressure and 300 K, Can. J. Phys., 50, No. 14, 1644–1647 (1972).

    Google Scholar 

  91. K. R. Harris and T. N. Bell, Mutual diffusion coefficients for the systems HD–N2 and HD–Ar at 1 atm pressure and 300 K, Can. J. Phys., 51, Nos. 19–20, 2101–2107 (1973).

    Google Scholar 

  92. A. S. M. Wahby, A. J. H. Boerboom, and J. Los, Diffusion of isotopic hydrogen molecules in argon and krypton, Physica, 75, No. 3, 560–572 (1974).

    Article  Google Scholar 

  93. R. D. Trengove and P. J. Dunlop, Diffusion and thermal diffusion in binary mixtures of hydrogen with Ne, Ar, Kr and Xe, Proc. 8th Symp. Thermophys. Prop., 1, ASME, New York (1982), pp. 289–296.

  94. A. S. M. Wahby and J. Los, Quasi-Lorentzian diffusion of hydrogen in noble gases, Physica, 128C, No. 2, 243–252 (1985).

    Google Scholar 

  95. K. Z. Al’zhanov, True diffusion coefficients of some binary gas mixtures, Inzh.-Fiz. Zh., 71, No. 4, 710–717 (1998).

    Google Scholar 

  96. P. J. Dunlop, A comparison of two sets of diffusion coefficients for hydrogen-noble gas systems, Physica, 145A, No. 2/3, 597–598 (1987).

    Google Scholar 

  97. T. L. Ibbs, Thermal diffusion measurements, Proc. Roy. Soc. London, A107, No. 743, 470–486 (1925).

    Google Scholar 

  98. T. L. Ibbs, K. E. Grew, and A. A. Hirsk, Thermal diffusion of low temperatures, Proc. Phys. Soc. London, 41, No. 5, 456–475 (1929).

    Google Scholar 

  99. M. M. Papari, D. Mohammad-aghaiee, B. Haghighi, and A. Boushehri, Transport properties of Ar–H2 mixture from unlike interaction, Fluid Phase Equil., 232, No. 1/2, 122–135 (2005).

    Article  Google Scholar 

  100. T. Hosseinnejad, H. Behnejad, and V. H. Shahmir, Calculation of transport properties and intermolecular PEF of the binary mixtures of H2 with Ne, Ar, Kr and Xe by a semi-empirical inversion method, Fluid Phase Equil., 258, No. 2, 155–167 (2007).

    Article  Google Scholar 

  101. GSSSD R 363-90. L. I. Kurlapov, I. K. Bektasova, and O. G. Zimin, Helium–Nitrogen, Hydrogen–Argon Systems. Concentrational Dependence of the Coefficients of Mutual Diffusion of Gases under Normal Conditions, Moscow (1990).

  102. R. J. Le Roy and J. M. Hutson, Improved PES for the interaction of H2 with Ar, Kr, Xe, J. Chem. Phys., 86, No. 2, 837–853 (1987).

    Article  Google Scholar 

  103. J. M. Hutson, Close-coupling calculations of transport and relaxation cross sections for H2 in Ar, J. Chem. Phys., 86, No. 2, 854–857 (1987).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Zolotukhina.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 83, No. 1, pp. 169–188, January–February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shashkov, A.G., Zolotukhina, A.F., Fokin, L.P. et al. Transfer properties of mixtures of rarefied neutral gases. Hydrogen–argon system. J Eng Phys Thermophy 83, 188–208 (2010). https://doi.org/10.1007/s10891-010-0334-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0334-2

Keywords

Navigation