Skip to main content
Log in

On physical and mathematical modeling of the initiation and propagation of peat fires

  • Reviews
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Works devoted to experimental and theoretical investigations of peat fires under laboratory and natural conditions have been reviewed. Evaluations show that the smoldering of surface combustible materials in peatlands involves half the biomass burnt during natural (forest, steppe, and peat) fires. These fires are of first importance in emission of combustion products into the atmosphere, destruction of the soil structure, and damage to the environment. Many investigations have been carried out on the problem of peat-fire behavior, and they have been published in various journals and materials of conferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. Page, F. Siegert, J. O. Rieley, H. D. V. Boehm, A. Jaya, and S. Limin, The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature, No. 420, 61 (2002).

  2. H. Svensen, D. K. Dysthe, E. H. Bandlien, S. Sacko, H. Coulibaly, and S. Planke, Subsurface combustion in Mali: Refutation of the active volcanism hypothesis in West Africa, Geology, No. 31, 581–584 (2003).

  3. I. Bertschi, R. J. Yokelson, D. E. Ward, R. E. Babbitt, R. A. Susott, J. G. Goode, and W. M. Hao, Trace gas and particle emissions from fires in large diameter and belowground biomass fuels, J. Geophys. Res., No. 108, 8.1–8.12 (2003).

  4. E. R. C. Rabelo, C. A. G. Veras, J. A. Carvalho, E. C. Alvarado, D. V. Sandberg, and J. C. Santos, Log smoldering after an Amazonian deforestation fire, Atmos. Environ., No. 38, 203–211 (2004).

    Google Scholar 

  5. K. P. O’Neill, Role of bryophyte-dominated ecosystems in the global carbon budget, in: A. J. Shaw and B. Coffinet (Eds.), Bryophyte Ecology, Cambridge University Press, Cambridge, UK (2000), pp. 344–368.

    Google Scholar 

  6. E. Lappalainen, Global Peat Resources. International Peat Soc., Jyska, UNESCO, Finland (1996).

    Google Scholar 

  7. D. Charman, Peatlands and Environmental Change, John Wiley & Sons, Chichester, UK (2002).

    Google Scholar 

  8. R. S. Clymo, Peat, in: A. J. P. Gore (Ed.), Ecosystems of the World 4A. Mires: Swamp, Bog Fen and Moor, General Studies, The Netherlands Elsevier, Amsterdam (1983), pp. 159–224.

    Google Scholar 

  9. A. Gray, G. Rein, C. Legg, and M. Davies, Literature Review: Peat. Fuel Moisture & Fire Test Monitoring Programme, Final Report to Mett Office, Ref: PB/B4366, University of Edinburgh (2008).

  10. E. Kivinen and P. Pakarinen, Geographical distribution of peat resources and major peatland complex types in the World, Ann. Acad. Sci. Fenn., Ser. A3, 132, 1–28 (1981).

    Google Scholar 

  11. D. H. Boelter, Water storage characteristics of several peats in situ, Soil Sci. Soc. Am. Proc., No. 28, 433–435 (1964).

    Google Scholar 

  12. O. Lindstrom, The technology of peat, Ambio., No. 9, 309–313 (1980).

  13. H. A. P. Ingram, Hydrology, in: A. J. P. Gore (Ed.), Ecosystems of the World 4A, Mires: Swamp, Bog Fen and Moor, General Studies, The Netherlands Elsevier, Amsterdam (1983), pp. 67–158.

    Google Scholar 

  14. A. Usup, Y. Hashimoto, H. Takahashi, and H. Hayasaka, Combustion and thermal characteristics of peat fire in tropical peatland in Central Kalimantan, Indonesia. Tropics, No. 14, 1–19 (2004).

  15. E. S. Artsybashev, V. I. Chistjakov, V. V. Gorshkov, and A. I. Kuprijanov, Measures for fires-prevention on peat deposits, in: D. McClean and R. Wein (Eds.), The Role of Fire in Northern Circumpolar Ecosystems, John Wiley & Sons, Chichester, UK (1983), pp. 259–271.

    Google Scholar 

  16. O. M. Bragg and J. H. Tallis, The sensitivity of peat-covered upland landscapes, Catena, No. 42, 345–360 (2001).

    Google Scholar 

  17. R. A. Hartford and W. H. Frandsen, When it’s hot, it’s hot etc. or maybe it’s not! (Surface flaming may not portend extensive soil heating), Int. J. Wildland Fire, No. 2, 139–144 (1992). 1241

  18. G. Rein, N. Cleaver, C. Ashton, P. Pironi, and J. L. Torero, The severity of smouldering peat fires and damage to the forest soil, Catena, 74, No. 3, 304–309 (2008).

    Article  Google Scholar 

  19. A. Simeoni, G. Garcia, and G. Rein, Description of subsurface fires and some experimental consideration on their dynamics, Izv. Vyssh. Uchebn. Zaved., 52, No. 2/2, 172–178 (2009).

    Google Scholar 

  20. S. L. Stephens and M. A. Finney, Prescribed fire mortality of Sierra Nevada mixed conifer tree species: effects of crown damage and forest floor combustion, Forest Ecol. Manag., No. 161, 261–271 (2002).

    Google Scholar 

  21. J. Reardon, R. Hungerford, and K. Ryan, Factors affecting sustained smouldering in organic soils from pocosin and pond pine woodland wetlands, Int. J. Wildland Fire, No. 16, 107–118 (2007).

    Google Scholar 

  22. W. H. Frandsen, Ignition probability of organic soils. Can. J. Forest Res., No. 27, 1471–1477 (1997).

    Google Scholar 

  23. T. J. Ohlemiller, Smoldering combustion, SFPE Handbook of Fire Protection Engineering, 3rd ed., Massachusetts (2002), pp. 2.200–2.210.

  24. M. G. Hille and S. L. Stephens, Mixed conifer forest duff consumption during prescribed fires, Tree Crown Impact Forest, Sci., No. 51, 417–424 (2005).

  25. K. Miyanishi and E. A. Johnson, Process and patterns of duff consumption in the mixedwood boreal forest, Can. J. Forest Res., No. 32, 1285–1295 (2002).

    Google Scholar 

  26. G. Rein, Smouldering combustion phenomena in science and technology, Int. Rev. Chem. Eng., 1, No. 1, 3–20 (2009).

    MathSciNet  Google Scholar 

  27. G. B. Stracher and T. P. Taylor, Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe, Int. J. Coal Geol., No. 59, 7–17 (2004).

    Google Scholar 

  28. N. N. Strygin, Research on spontaneous combustion processes in peat and their prevention, Proc. 2nd Int. Peat Congress, Leningrad, HMSO, Edinburgh (1968), pp. 509–513.

  29. S. Cremonini, G. Etiope, F. Italiano, and G. Martinelli, Evidence of possible enhanced peat burning by deeporigin methane in the Po river delta plain (Italy), J. Geol., No. 116, 401–413 (2008).

    Google Scholar 

  30. W. H. Frandsen, The influence of moisture and mineral soil on the combustion limits of smoldering forest duff, Can. J. Forest Res., 17, No. 12, 1540–1544 (1987).

    Article  Google Scholar 

  31. W. H. Frandsen, A stirred water calorimeter for measuring heat flux from smoldering combustion, Int. J. Wildland Fire, 8, No. 3, 129–135 (1998).

    Article  Google Scholar 

  32. W. H. Frandsen, Heat evolved from smoldering peat, Int. J. Wildland Fire, No. 3, 197–204 (1991).

  33. F. Shafizadeh and Y. Sekiguchi, Oxidation of chars during smoldering combustion of cellulosic materials, Combust. Flame, 55, No. 2, 171–179 (1984).

    Article  Google Scholar 

  34. J. A. Persson, E. Johansson, and C. Albano, Quantitative thermogravimetry on peat, Anal. Chem., No. 58, 1172–1178 (1986).

    Google Scholar 

  35. C. C. Hardy, R. D. Ottmar, J. L. Peterson, J. C. Core, and P. Seamon (Eds.), Smoke Management Guide for Prescribed and Wildland Fire, 2001 Edition, PMS 420-2, Natural Wildfire Coordination Group, Natural Interagency Fire Center, Boise, Idaho (2002).

  36. K. Nilson, The Carbon Dioxide Emission Factor for Combustion of Swedish Peat, IVL Swedish Environmental Research Institute Ltd (2004).

  37. D. O. Chand, P. Schmid, R. S. Gwaze, G. Parmar, K. Helas, K. Zeromskiene, A. Wiedensohler, A. Massling, and M. O. Andreae, Laboratory measurements of smoke optical properties from the burning of Indonesian peat and other types of biomass, Geophys. Res. Lett., 32, No. 12, L12819 (2005).

    Article  Google Scholar 

  38. A. A. Meharg and K. Killham, The burning of coastal peats. A major pre-industrial revolution source of dioxins and furans, Nature, No. 421, 909–910 (2003).

  39. G. Rein, S. Cohen, and A. Simeoni, Carbon emissions from smouldering peat in shallow and strong fronts, Proc. Combust. Inst., 32, No. 2, 2489–2496 (2009).

    Article  Google Scholar 

  40. A. M. Grishin, Mathematical Models of Forest Fires and New Methods of Combating Them [in Russian], Izd. Tomsk Univ., Tomsk (1981).

    Google Scholar 

  41. A. M. Grishin, General mathematical models of forest and peat fires and their applications, Usp. Mekhaniki, 1, No. 4, 41–89 (2002).

    MathSciNet  Google Scholar 

  42. A. M. Grishin, A. N. Golovanov, Ya. V. Sukov, and Yu. S. Preis, Experimental study of peat ignition and combustion, Inzh.-Fiz. Zh., 79, No. 3, 137–142 (2006). 1242

    Google Scholar 

  43. A. M. Grishin, V. I. Zinchenko, A. Ya. Kuzin, S. P. Sinitsyn, and V. N. Trushnikov, Solution of Some Inverse Problems of the Mechanics of Reacting Media [in Russian], Izd. Tomsk Univ., Tomsk (2006).

    Google Scholar 

  44. A. M. Grishin, V. I. Zinchenko, K. N. Efimov, A. N. Subbotin, and A. S. Yakimov, Iteration-Interpolation Method and Its Applications [in Russian], Izd. Tomsk Univ., Tomsk (2004).

    Google Scholar 

  45. A. M. Grishin and A. S. Yakimov, Mathematical simulation of the process of peat ignition, Inzh.-Fiz. Zh., 81, No. 1, 191–199 (2008).

    Google Scholar 

  46. A. M. Grishin and A. S. Yakimov, Mathematical simulation of peat fires, Izv. Vyssh. Uchebn. Zaved., Fizika, 52, No. 2/2, 112–121 (2009).

    Google Scholar 

  47. E. M. Kallman, Numerical Modeling of Microgravity Smoldering Combustion in Polyurethane Foam, PhD Thesis, Department of Mechanical Engineering, University of California at Berkeley (2005).

  48. E. Pastor, L. Zarate, E. Planas, and J. Arnaldos, Mathematical models and calculation systems for the study of wildland fire behavior, Prog. Energy Combust. Sci., 29, No. 2, 139–153 (2003).

    Article  Google Scholar 

  49. F. S. Costa and D. V. Sandberg, Mathematical model of a smoldering log, Combust. Flame, 139, No. 3, 227–238 (2004).

    Article  Google Scholar 

  50. S. S. Dosanjh, P. J. Pagni, and A. C. Fernandez-Pello, Forced cocurrent smoldering combustion, Combust. Flame, 68, No. 2, 131–142 (1987).

    Article  Google Scholar 

  51. A. Bar-Ilan, G. Rein, D. C. Walther, A. C. Fernandez-Pello, J. L. Torero, and D. L. Urban, The effect of buoyancy on opposed smoldering, Combust. Sci. Technol., No. 176, 2027–2055 (2004).

    Google Scholar 

  52. T. J. Ohlemiller, J. Bellan, and F. Rogers, A model of smoldering combustion applied to flexible polyurethane foams, Combust. Flame, No. 36, 197–215 (1979).

    Google Scholar 

  53. S. V. Leach, G. Rein, J. L. Ellzey, O. A. Ezekoye, and J. L. Torero, Kinetic and fuel property effects on forward smoldering combustion, Combust. Flame, 120, No. 3, 346–358 (2000).

    Article  Google Scholar 

  54. G. Rein, A. C. Fernandez-Pello, and D. L. Urban, Computational Model of Forward and Opposed Smoldering Combustion in Microgravity, Proc. Combust. Inst., 31, No. 2, 2677–2684 (2007).

    Article  Google Scholar 

  55. C. Di Blasi, Mechanisms of two-dimensional smoldering propagation through packed fuel beds, Combust. Sci. Technol., No. 106, 103–124 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Grishin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 6, pp. 1210–1217, November–December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grishin, A.M., Yakimov, A.S., Rein, G. et al. On physical and mathematical modeling of the initiation and propagation of peat fires. J Eng Phys Thermophy 82, 1235–1243 (2009). https://doi.org/10.1007/s10891-010-0293-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0293-7

Keywords

Navigation