Skip to main content
Log in

Medicago truncatula Oleanolic-Derived Saponins Are Correlated with Caterpillar Deterrence

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plant resistance mechanisms to insect herbivory can potentially be bred into crops as an important strategy for integrated pest management. Medicago truncatula ecotypes inoculated with the rhizobium Ensifer medicae (Sinorhizobium medica) WSM419 were screened for resistance to herbivory by caterpillars of the beet armyworm, Spodoptera exigua, through leaf and whole plant choice studies; TN1.11 and F83005.5 are identified as the least and most deterrent ecotypes, respectively. In response to caterpillar herbivory, both ecotypes mount a robust burst of plant defensive jasmonate phytohormones. Restriction of caterpillars to either of these ecotypes does not adversely affect pest performance. This argues for an antixenosis (deterrence) resistance mechanism associated with the F83005.5 ecotype. Unbiased metabolomic profiling identified strong ecotype-specific differences in metabolite profile, particularly in the content of oleanolic-derived saponins that may act as antifeedants. Compared to the more susceptible ecotype, F83005.5 has higher levels of oleanolic-type zanhic acid- and medicagenic acid-derived compounds. Together, these data support saponin-mediated deterrence as a resistance mechanism of the F83005.5 ecotype and implicates these compounds as potential antifeedants that could be used in agricultural sustainable pest management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

Api:

Apiofuranose

Ara:

Arabinose

Dhex:

Deoxyhexose

Glc:

Glucose

GlcA:

Galacuronic acid

Hex:

Hexose

HexA:

Uronic acid

HPLC-MS/MS:

High performance liquid chromatography-tandem mass spectroscopy

JA:

Jasmonic acid

JA-Ile:

(+)-7-iso-jasmonyl-L-isoleucine

LD:

Least deterrent

MD:

Most deterrent

NMR:

Nuclear magnetic resonance

OPDA:

cis-(+)-12-Oxo-phytodienoic acid

Pen:

Pentose

PCA:

Principal component analysis

Rha:

Rhamnose

UPLC-qTOF-MS:

Ultrahigh performance liquid chromatography-quantitative time-of-flight-mass spectroscopy

Xyl:

Xylose

References

  • Adel MM, Sammour EA (2012) Effect of sub-lethal dose of natural compound of Medicago sativa (L., Leguminaceae) on the hind gut and fatbody of Spodoptera littoralis (Lepidoptera, Noctuidae). J Appl Sci Res 8:1398–1408

    CAS  Google Scholar 

  • Adel MM, Sehnal F, Jurzysta M (2000) Effects of alfalfa saponins on the moth Spodoptera littoralis. J Chem Ecol 26:1065–1078

    Article  CAS  Google Scholar 

  • Agrell J, Oleszek W, Stochmal A, Olsen M, Anderson P (2003) Herbivore-induced responses in alfalfa (Medicago sativa). J Chem Ecol 29:303–320

    Article  CAS  Google Scholar 

  • Ben C, Toueni M, Montanari S, Tardin MC, Fervel M, Negahi A, Saint-Pierre L, Mathieu G, Gras MC, Noël D, Prospéri JM, Pilet-Nayel ML, Baranger A, Huguet T, Julier B, Rickauer M, Gentzbittel L (2013a) Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to Verticillium wilt. J Exp Bot 64:317–332

    Article  CAS  PubMed  Google Scholar 

  • Ben C, Debellé F, Berges H, Bellec A, Jardinaud MF, Anson P, Huguet T, Gentzbittel L, Vailleau F (2013b) MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum. New Phytol 199:758–772

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Berger S, Schaller A, Stintzi A (2014) Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC Plant Biol 14:257

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva P, Eyraud V, Carre-Pierrat M, Sivignon C, Rahioui I, Royer C, Gressent F (2012) High toxicity and specificity of the saponin 3-GlcA-28-AraRhaXyl-medicagenate, from Medicago truncatula seeds, for Sitophilus oryzae. BMC Chem Biol 12:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Dave A, Graham IA (2012) Oxylipin signaling: a distinct role for the jasmonic acid precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA). Front Plant Sci 3:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Geyter E, Lamber E, Geelen D, Smagghe G (2007) Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol 1:96–105

    Google Scholar 

  • De Geyter E, Swevers L, Soin T, Geelen D, Smagghe G (2012) Saponins do not effect the ecdysteroid receptor complex but cause membrane permeation in insect cell cultures. J Insect Physiol 58:18–23

    Article  PubMed  Google Scholar 

  • Djébali N, Jauneau A, Ameline-Torregrosa C, Chardon F, Jaulneau V, Mathé C, Bottin A, Cazaux M, Pilet-Nayel ML, Baranger A (2009) Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Mol Plant-Microbe Interact 22:1043–1055

    Article  PubMed  Google Scholar 

  • Faizal A, Geelen D (2013) Saponins and their role in biological processes in plants. Phytochem Rev 12:877–893

    Article  CAS  Google Scholar 

  • Gaige AR, Doerksen T, Shui B (2012) Medicago truncatula ecotypes A17 and R108 show variation in jasmonic acid/ethylene induced resistance to Macrophomina phaseolina. Can J Plant Pathol 34:98–103

    Article  CAS  Google Scholar 

  • Gao LL, Klingler JP, Anderson JP, Edwards OR, Singh KB (2008) Characterization of pea aphid resistance in Medicago truncatula. Plant Physiol 146:996–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia, J, Barker DG, Journet EP (2006) Seed storage and germination. In: The Medicago truncatula handbook. Mathesius U, Journet EP, Sumner LW (eds) ISBN 0-9754303-1-9 (https://www.noble.org/medicago-handbook)

  • Gaupels F, Ghirardo A (2013) The extrafascicular phloem is made for fighting. Front Plant Sci 4:1–4

    Article  Google Scholar 

  • Gentzbittel L, Andersen SU, Ben C, Rickauer M, Stougaard J, Young ND (2015) Naturally occurring diversity helps to reveal genes of adaptive importance in legumes. Front Plant Sci 6:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Gholami A, De Geyter N, Pollier J, Goormachtic S, Goossens A (2014) Natural product biosynthesis in Medicago species. Nat Prod Rep 31:356–380

    Article  CAS  PubMed  Google Scholar 

  • Goławska S (2007) Deterrence and toxicity of plant saponins for the tea aphid, Acyrthosiphon pisum Harris. J Chem Ecol 33:1598–1606

    Article  PubMed  Google Scholar 

  • Goławska S, Łukasik I, Wójcicka A, Sytykiewicz H (2012) Relationship between saponin content in alfalfa and aphid development. Acta Biol Cracov 2:1–8

    Google Scholar 

  • Greenberg S, Sappington T, Legaspi B, Liu T, Setamou M (2001) Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Ann Entomol Soc Am 94:566–575

    Article  Google Scholar 

  • Grubbs FE (1969) Procedures for detection outlying observations in samples. Technometrics 11:1–21

    Article  Google Scholar 

  • Guo SM, Kamphuis LG, Gao LL, Klingler JP, Lichtenzveig J, Edwards O, Singh KB (2012) Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula. J Exp Bot 63:3913–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horber E, Leath KT, Berrang B, Marcarian V, Hanson CH (1974) Biological activities of saponin components from Dupuits and Lahontan alfalfa. Entomol Exp Appl 17:410–424

    Article  CAS  Google Scholar 

  • Huhman DV, Sumner LW (2002) Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59:347–360

    Article  CAS  PubMed  Google Scholar 

  • Huhman DV, Berhow MA, Sumner LW (2005) Quantification of saponins in aerial and subterranean tissues of Medicago truncatula. J Agric Food Chem 53:1914–1920

    Article  CAS  PubMed  Google Scholar 

  • Isman M (2002) Insect antifeedants. Pestic Outlook 13:152–157

    Article  CAS  Google Scholar 

  • Jain DC, Tripathi AK (1991) Insect feeding-deterrent activity of some saponin glycosides. Phytother Res 5:139–141

    Article  CAS  Google Scholar 

  • Kapusta I, Janda B, Stochmal A, Oleszek W (2005) Determination of saponins in aerial parts of barrel medic (Medicago truncatula) by liquid chromatography-electrospray ionization/mass spectrometry. J Agric Food Chem 53:7654–7660

    Article  CAS  PubMed  Google Scholar 

  • Khakimov B, Tseng LH, Godejohann M, Bak S, Engelsen SB (2016) Screening for triterpenoid saponins in plant using hyphenated analytical platforms. Molecules 21:1614

    Article  Google Scholar 

  • Koul O (2008) Phytochemicals and insect control: an antifeedant approach. Crit Rev Plant Sci 27:1–24

    Article  CAS  Google Scholar 

  • Lazrek F, Roussel V, Ronfort J, Cardinet G, Chardon F, Aouani ME, Huguet T (2009) The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica 135:391–402

    Article  CAS  PubMed  Google Scholar 

  • Maxmen A (2013) Crop pests: under attack. Nature 501:S15–S17

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  Google Scholar 

  • Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49:439–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negahi A, Ben C, Gentzbittel L, Maury P, Nabipour AR, Ebrahimi A, Sarrafi A, Richauer M (2013) Quantitative trait loci associated with resistance to a potato isolate of Verticillium albo-atrum in Medicago truncatula. Plant Pathol 63:308–315

    Article  Google Scholar 

  • Nozzolillo C, Arnason JT, Campos F, Donskov N, Jurzysta M (1997) Alfalfa leaf saponins and insect resistance. J Chem Ecol 23:995–1002

    Article  CAS  Google Scholar 

  • Ogawa T, Ara T, Aoki K, Suzuki H, Shibata D (2010) Transient increase in salicylic acid and its glucose conjugates after wounding in Arabidopsis leaves. Plant Biotechnol 27:205–209

    Article  CAS  Google Scholar 

  • Pan X, Welti R, Wang X (2010) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc 5:986–992

    Article  CAS  PubMed  Google Scholar 

  • Paudel JR, Bede JC (2015) Ethylene signaling modulates herbivore-induced defense responses in the model legume Medicago trunctula. Mol Plant-Microbe Interact 28:569–579

    Article  CAS  PubMed  Google Scholar 

  • Podolak I, Galanty A, Sobolewska D (2010) Saponins as cytotoxic agents: a review. Phytochem Rev 9:425–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahoui S, Ben C, Chaoui A, Martinez Y, Yamchi A, Richauer M, Gentzbittel L, El Ferjani E (2014) Oxidative injury and antioxidant genes regulation in cadmium-exposed radicales of six contrasted Medicago truncatula genotypes. Environ Sci Pollut Res Int 21:8070–8083

    Article  CAS  PubMed  Google Scholar 

  • Rahoui S, Martinez Y, Sakouhi L, Ben C, Rickauer M, El Ferjani E, Gentzbittel L, Chaoui A (2016) Cadmium-induced changes in antioxidative systems and differentiation in roots of contrasted Medicago truncatula lines. Protoplasma. doi:10.1007/500709-016-0968-9

  • Rose RJ (2008) Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. Funct Plant Biol 35:253–264

    Article  Google Scholar 

  • Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins TJV, Castillejo MA, Singh KB, Rispail N (2015) Achievements and challenges in legume breeding for pest and disease resistance. Crit Rev Plant Sci 34:1–42

    Article  Google Scholar 

  • Scholes DR, Siddappaji MH, Paige KN (2013) The genetic basis of overcompensation in plants: a synthesis. Int J Mod Bot 3:34–42

    Google Scholar 

  • Shabab M, Khan SA, Vogel H, Heckel DG, Boland W (2014) OPDA isomerase GST16 is involved in phytohormone detoxification and insect development. FEBS J 281:2769–2783

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328

    Article  CAS  PubMed  Google Scholar 

  • Stewart SA, Hodge S, Ismail N, Mansfield JW, Feys BJ, Prospéri JM, Huguet T, Ben C, Gentzbittel L, Powell G (2009) The RAP1 gene confers effective, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Mol Plant-Microbe Interact 22:1645–1655

    Article  CAS  PubMed  Google Scholar 

  • Szczepanik M, Krystkowiak K, Jurzysta M, Baiły Z (2001) Biological activity of saponins from alfalfa tops and roots against Colorado potato beetle larvae. Acta Agrobot 54:34–45

    Google Scholar 

  • Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs KL, Yandell M, Gundlach H, Mayer KFX, Schwartz DC, Town CD (2014) An improved genome release (version Mt4.0) for the model legume Medicago trunctula. BMC Genomics 15:312

    Article  PubMed  PubMed Central  Google Scholar 

  • Tava A, Odoardi M (1996) Saponins from Medicago spp.: chemical characterization and biological activity against insects. In: Waller GR, Yamasaki K (eds) Saponins used in food and Agriculture. Springer Netherlands, New York, pp 97–109

    Chapter  Google Scholar 

  • Taylor WG, Fields PG, Sutherland DH (2004) Insectical components from field pea extracts: Soyasaponins and lysolectins. J Agric Food Chem 52:7484–7490

    Article  CAS  PubMed  Google Scholar 

  • Terpolili JJ, O’Hara GW, Tiwari RP, Dilworth MJ, Howieson JG (2008) The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021. New Phytol 179:62–66

    Article  Google Scholar 

  • Tivoli B, Baranger A, Sivasithamparam K, Barbett MJ (2006) Annual Medicago: from a model crop challenged by a spectrum of nectrotrophic pathogens to a model plant to explore the nature of disease resistance. Ann Bot 98:1117–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trumble JT, Kolodny-Hirsch DM, Ting IP (1993) Plant compensation for arthropod herbivory. Annu Rev Entomol 38:93–119

    Article  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress responses, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson BS, Bedair MF, Urbanczyk-Wochniak E, Huhman DV, Yang DS, Allen SN, Li W, Tang Y, Sumner LW (2015) Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells. Plant Physiol 167:1699–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J, Sinelnikov I, Han B, Wishart DS (2015) MetaboAnalyst 3.0 - making metabolomics more meaningful. Nucleic Acids Res 43:W251–W257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Bharti AK (2012) Genome-enabled insights into legume biology. Annu Rev Plant Biol 63:283–305

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop plants. Curr Opin Plant Biol 12:193–201

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahaf O, Blanchet S, De Zélicourt A, Alunni B, Plet J, Laffont C, De Lorenzo L, Imbeaud S, Ichanté JL, Diet A (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Mol Plant 5:1068–1081

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. J. Howieson and J. Terpolilli (Murdoch University) for the Ensifer medicae WSM419 culture. We thank Jingyuan Ji, Joshua Lee and Yifan Liu for assistance with caterpillar herbivory experiments. We thank the anonymous reviewers of a previous version of this manuscript for their insightful comments. Phytohormone analysis was conducted at the Proteomics & Mass Spectrometry Facility, Danforth Plant Science Center that is supported by a National Science Foundation grant #DBI-1427621 used to purchase a QTRAP LC-MS/MS. This research was funded through a Natural Sciences and Engineering Research Council of Canada grant to JCB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline C. Bede.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, F., Watson, B.S., Meek, D. et al. Medicago truncatula Oleanolic-Derived Saponins Are Correlated with Caterpillar Deterrence. J Chem Ecol 43, 712–724 (2017). https://doi.org/10.1007/s10886-017-0863-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0863-7

Keywords

Navigation