Skip to main content
Log in

Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Synthetic plant volatile lures attract natural enemies, but may have non-target effects due to the multifunctional nature of volatile signals. For example, methyl salicylate (MeSA) is used to attract predators, yet also serves as a signaling hormone involved in plant pathogen defense. We investigated the consequences of deploying MeSA lures to attract predators for tomato (Solanum lycopersicum) defense against herbivores. To understand the spatial distribution of the lure’s effect, we exposed tomatoes in the field to MeSA along a linear distance gradient and induced defenses by simulating feeding by hornworm caterpillars in a fully crossed factorial design (+/− MeSA, +/− herbivory). Subsequently, we analyzed activity of several defensive proteins (protease inhibitors, polyphenol oxidase, peroxidase), development of hornworm larvae (Manduca sexta), growth of fungal pathogens (Cladosporium and Alternaria), and attractiveness to herbivores and predators. Overall, MeSA-exposed plants were more resistant to both insects and pathogens. Secondary pathogen infection was reduced by 25% in MeSA exposed plants, possibly due to elevated polyphenol oxidase activity. Interestingly, we found that lures affected plant pathogen defenses equivalently across all distances (up to 4 m away) indicating that horizontal diffusion of a synthetic volatile may be greater than previously assumed. While thrips avoided colonizing hornworm– damaged tomato plants, this induced resistance was not observed upon pre-exposure to MeSA, suggesting that MeSA suppresses the repellant effect induced by herbivory. Thus, using MeSA lures in biological control may inadvertently protect crops from pathogens, but has mixed effects on plant resistance to insect herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali JG, Agrawal AA (2014) Asymmetry of plant–mediated interactions between specialist aphids and caterpillars on two milkweeds. Funct Ecol 28:1404–1412

    Article  Google Scholar 

  • Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 135:2025–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson P, Sadek MM, Larsson M, Hansson BS, Thöming G (2013) Larval host plant experience modulates both mate finding and oviposition choice in a moth. Anim Behav 85:1169–1175

    Article  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, Von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions:" talking trees" in the genomics era. Science 311:812–815

    Article  CAS  PubMed  Google Scholar 

  • Barg R, Pilowsky M, Shabrai S, Carmi N, Szechtman AD, Dedicova B, Salts Y (1997) The TYLCV-tolerant tomato line MP-1 is characterized by superior transformation competence. J Exp bot 48:1919–1923

    Article  CAS  Google Scholar 

  • Bashan Y, Okon Y, Henis Y (1987) Peroxidase, pholypheoloxidase, and phenols in relation to resistance against Pseudomonas syringae pv. tomato in tomato plants. Can J Bot 65:366–372

    Article  CAS  Google Scholar 

  • Braasch J, Kaplan I (2012) Over what distance are plant volatiles bioactive? Estimating the spatial dimensions of attraction in an arthropod assemblage. Entomol Exp Appl 145:115–123

    Article  CAS  Google Scholar 

  • Braasch J, Wimp GM, Kaplan I (2012) Testing for phytochemical synergism: arthropod community responses to induced plant volatile blends across crops. J Chem Ecol 38:1264–1275

    Article  CAS  PubMed  Google Scholar 

  • Christensen RHB (2015) Ordinal - Regression models for ordinal data. R package version 2015.6-28. http://www.cran.r-project.org/package=ordinal/

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci U S a 110:1–6

    Article  Google Scholar 

  • Conconi A, Miquel M, Borwse JA, Ryan CA (1996) Intercellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol 111:797–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constabel CP, Barbehenn R (2008) Defensive roles of polyphenol oxidase in plants. In: Shaller A (ed.) Induced plant resistance to Herbivory. Springer Science, Netherlands, pp 253–269

  • Constabel CP, Ryan CA (1998) A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry 47:507–511

    Article  CAS  Google Scholar 

  • Degenhardt DC, Refi-Hind S, Stratmann JW, Lincoln DE (2010) Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum. Phytochemistry 71:2024–2037

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Baldwin I (2010) The evolutionary context for herbivore-induce plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175

    Article  CAS  PubMed  Google Scholar 

  • Egusa M, Miwa T, Kaminaka H, Takano Y, Kodama M (2013) Nonhost resistance of Arabidopsis thaliana against Alternaria alternata involves both pre- and post invasive defenses but is collapsed by AAL-toxin in the absence of LOH2. Phytopathology 103:733–740

    Article  CAS  PubMed  Google Scholar 

  • Engelberth J, Alborn H (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S a 101:1781–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect–specific plant reactions. Trends Plant Sci 17:250–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Veyrat N, Robert CAM, Xu H, Frey M, Ton J, Turlings TCJ (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:1–10

    Article  Google Scholar 

  • Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol 180:722–734

    Article  CAS  PubMed  Google Scholar 

  • Fuerst EP, Okubara PA, Anderson JV, Morris CF (2014) Polyphenol oxidase as a biochemical seed defense mechanism. Front Plant Sci 5:689

    Article  PubMed  PubMed Central  Google Scholar 

  • Girón-Calva PS, Molina-Torres J, Heil M (2012) Volatile dose and exposure time impact perception in neighboring plants. J Chem Ecol 38:226–228

    Article  PubMed  Google Scholar 

  • Glinwood R, Blande JD (2016) Deciphering chemical language of plant communication: synthesis and future research directions. In: Glinwood R, Blande JD (eds) Deciphering chemical language of plant communication. Springer International Publishing, Switzerland, pp 319–326

    Chapter  Google Scholar 

  • Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphigidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125:711–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M, Adame-Álvarez RM (2010) Short signaling distances make plant communication a soliloquy. Biol Lett 6:843–845

    Article  PubMed  PubMed Central  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272

    Article  CAS  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363

    Article  PubMed  Google Scholar 

  • Huffaker A, Pearce G, Veyrat N, Erb M, Turlings TC, Sartor R, Shen X, Briggs SP, Vaughan MM, Alborn HT, Teal PE, Schmelz EA (2013) Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci U S a 110:5707–5712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inbar M, Doostdar H, Sonoda RM, Leibee GL, Mayer RT (1998) Elicitors of plant defensive systems reduce insect densities and disease incidence. J Chem Ecol 24:135–149

    Article  CAS  Google Scholar 

  • James DG (2003a) Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ Entomol 32:977–982

    Article  CAS  Google Scholar 

  • James DG (2003b) Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. J Chem Ecol 29:1601–1609

    Article  CAS  PubMed  Google Scholar 

  • James DG, Grasswitz TR (2005) Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. BioControl 50:871–880

    Article  CAS  Google Scholar 

  • James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1628

    Article  CAS  PubMed  Google Scholar 

  • Kaplan I (2012) Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? Biol Control 60:77–89

    Article  Google Scholar 

  • Karban R, Maron J, Felton GW, Ervin G, Eichenseer H (2003) Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos 2:325–332

    Article  Google Scholar 

  • Karban R, Yang LH, Edward KF (2014) Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett 17:44–52

    Article  PubMed  Google Scholar 

  • Khan ZR, James DG, Midega CAO, Pickett JA (2008) Chemical ecology and conservation biological control. Biol Control 45:210–224

    Article  CAS  Google Scholar 

  • Koornneef A, Pieterse CM (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CM (2008) Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol 147:1358–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Lee JC (2010) Effect of methyl salicylate-based lures on beneficial and pest arthropods in strawberry. Environ Entomol 39:653–660

    Article  CAS  PubMed  Google Scholar 

  • Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    Article  CAS  PubMed  Google Scholar 

  • Mallinger RE, Hogg DB, Gratton C (2011) Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J Econ Entomol 104:115–124

    Article  PubMed  Google Scholar 

  • von Mérey GE, Veyrat N, Mahuku G, Valdez RL, Turlings TCJ, D’Alessandro M (2011) Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. Phytochemistry 72:1838–1847

    Article  Google Scholar 

  • Murlis J, Elkinton JS, Carde RT (1992) Odor plumes and how insects use them. Annu Rev Entomol 37:505–532

    Article  Google Scholar 

  • Ökmen B, Etalo DW, Joosten MHA, Bouwmeester HJ, de Vos RCH, Collemare J, deWit PJGM (2013) Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytol 198:1203–1214

    Article  PubMed  Google Scholar 

  • Orians CM, Pomerleau J, Ricco R (2000) Vascular architecture generates fine scale variation in systemic induction of proteinase inhibitors in tomato. J Chem Ecol 26:471–485

    Article  CAS  Google Scholar 

  • Orre GUS, Wratten SD, Jonsson M, Hale RJ (2010) Effects of an herbivore-induced plant volatile on arthropods from three trophic levels in brassicas. Biol Control 53:62–67

    Article  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  CAS  PubMed  Google Scholar 

  • Paudel S, Rajotte EG, Felton GW (2014) Benefits and costs of tomato seed treatment with plant defense elicitors for insect resistance. Arthropod-Plant Interact 8:539–545

    Article  Google Scholar 

  • Peña-Cortes H, Albrecht T, Prat S, Weiler EW, Willmitzer L (1993) Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128

    Article  Google Scholar 

  • Quintana-Rodriguez E, Morales-Vargas AT, Molina-Torres J, Ádame-Alvarez RM, Acosta-Callegos JA, Heil M (2014) Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol 103:250–260

    Article  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Biol 43:439–463

    Article  CAS  Google Scholar 

  • Reisenman CE, Riffell JA, Duffy K, Pesque A, Mikles D, Goodwin B (2013) Species-specific effects of herbivory on the oviposition behavior of the moth Manduca sexta. J Chem Ecol 39:76–89

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Saona CR, Musser RO, Vogel H, Hum-Musser SM, Thaler JS (2010) Molecular, biochemical, and organismal analyses of tomato plants simultaneously attacked by herbivores from two feeding guilds. J Chem Ecol 36:1043–1057

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Saona C, Kaplan I, Braasch J, Chinnasamy D, Williams L (2011) Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries. Biol Control 59:294–303

    Article  CAS  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, O’Donnell P, Sammons M, Toshima H, Tumlinson JH (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci U S a 100:10552–10557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segarra G, Jáuregui O, Casanova E, Trillas I (2006) Simultaneous quantitative LC–ESI-MS/MS analyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress. Phytochemistry 67:395–401

    Article  CAS  PubMed  Google Scholar 

  • Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG, Leeson G, Nicol HI (2011) Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agric for Entomol 13:45–57

    Article  Google Scholar 

  • Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 122:1–16

    Article  CAS  Google Scholar 

  • Snoeren TAL, Mumm R, Poelman EH, Yang Y, Pichersky E, Dicke M (2010) The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. J Chem Ecol 36:479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stout MJ, Brovont RA, Duffey SS (1998) Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. J Chem Ecol 24:945–963

    Article  CAS  Google Scholar 

  • Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir KM, Akitake S, Nobuke T, Galis I, Aoki K, Shibata D, Takabayashi J (2014) Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci U S a 111:7144–7149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F, Zhao WL, Gao XW (2013) Communication between plants: induced resistance in poplar seedlings following herbivore infestation, mechanical wounding, and volatile treatment of the neighbors. Entomol Exp Appl 149:110–117

    CAS  Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (1996) Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol 22:1767–1781

    Article  CAS  PubMed  Google Scholar 

  • Thaler JS, Agrawal AA, Halitschke R (2010) Salicylate-mediated interactions between pathogens and herbivores. Ecology 91:1075–1082

    Article  PubMed  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    Article  CAS  PubMed  Google Scholar 

  • Thipyapong P, Hunt MD, Steffens JC (2004) Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220:105–117

    Article  CAS  PubMed  Google Scholar 

  • Ton J, D'Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch–Mani B, Turlings TC (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

  • van Dam NM, Hadwich K, Baldwin IT (2000) Induced responses in Nicotiana attenuata affect behavior and growth of the specialist herbivore Manduca sexta. Oecologia 122:317–379

  • van der Does D, Leon-Reyes A, Koornneef A, van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T, van Wees SCM, Pieterse CMJ (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–761

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Voskamp K, Den Otter CJ, Noorman N (1998) Electroantennogram responses of tsetse flies (Glossina pallidipes) to host odours in an open field and riverine woodland. Physiol Entomol 23:176–183

    Article  Google Scholar 

  • Webster B, Cardé RT (2016) Use of habitat odour by host-seeking insects. Biol Rev. doi:10.1111/brv.12281

Download references

Acknowledgements

We thank Gina Angelella, Carmen Blubaugh, Michael Garvey, Paola Olaya, Stephanie Russell, and Christy Shee for field assistance; Reilly Snider for field assistance and protein activity analysis; Dr. Cam Oehlschalger (Chemtica International) for donating PredaLure; Mercedes Laland for phytohormone analysis; and the Meigs farm crew for maintaining tomato plots. This study was funded by United States Department of Agriculture grant no. 2011-67013-30126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Rowen.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowen, E., Gutensohn, M., Dudareva, N. et al. Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense. J Chem Ecol 43, 573–585 (2017). https://doi.org/10.1007/s10886-017-0856-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0856-6

Keywords

Navigation