Skip to main content
Log in

Variable Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio are Perceived as Differences in Palatability to Arthropods

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Conspicuously colored dendrobatid frogs sequester alkaloid defenses from dietary arthropods, resulting in considerable alkaloid variation among populations; however, little is known about how variation is perceived as a defense against predators. Previous studies have found variable alkaloids in the dendrobatid Oophaga pumilio to be associated with differences in toxicity to laboratory mice, suggesting variable defenses are important. Arthropods are natural predators that use chemoreception to detect prey, including frogs, and may therefore perceive variation in alkaloid profiles as differences in palatability. The goal of the present study is to determine how arthropods respond to variable alkaloid defenses in O. pumilio. Frog alkaloids were sampled from individual O. pumilio from ten geographic locations throughout the Bocas del Toro region of Panama and the Caribbean coast of Costa Rica. Alkaloid extracts were used in feeding bioassays with the vinegar fly Drosophila melanogaster and the ant Ectatomma ruidum. Both species of arthropods fed significantly less on frog alkaloid extracts when compared to controls, and differences in alkaloid palatability were observed among frog populations, as well as between sexes and life stages within a population. Differences in alkaloid quantity, richness, and type were the main predictors of arthropod palatability. Our findings also represent the first direct evidence of a palatability spectrum in a vertebrate that sequesters chemical defenses from dietary sources. Further, the presence of a palatability spectrum suggests that variable alkaloid defenses in O. pumilio are ecologically relevant and play an important role in natural predator-prey interactions, particularly with respect to arthropod predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berenbaum M, Seigler D (1992) Biochemicals: engineering problems for natural selection. In: Roitberg BD, Isman MB (eds) Insect chemical ecology: an evolutionary approach. Chapman and Hall, New York, pp 89–121

    Google Scholar 

  • Blum M (1981) Chemical defenses of arthropods. Academic Press, New York

    Google Scholar 

  • Bowers MD (1992) The evolution of unpalatability and the cost of chemical defense in insects. In: Roitberg BD, Isman MB (eds) Insect chemical ecology: an evolutionary approach. Chapman and Hall, New York, pp 216–244

    Google Scholar 

  • Bowers MD (2003) Aposematic caterpillars: life-styles of the warningly colored and unpalatable. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 331–371

    Google Scholar 

  • Breed MD, Abel P, Bleuze TJ, Denton SE (1990) Thievery, home ranges, and nestmate recognition in Ectatomma ruidum. Oecologia 84:117–121

    Article  PubMed  Google Scholar 

  • Brower LP, Brower JVZ, Corvino JM (1967) Plant poisons in a terrestrial food chain. PNAS 57:893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brower LP, Ryerson WN, Coppinger LL, Glazier SC (1968) Ecological chemistry and the palatability spectrum. Science 161:1349–1351

    Article  CAS  PubMed  Google Scholar 

  • Daly JW, Myers CW (1967) Toxicity of Panamanian poison frogs (Dendrobates): some biological and chemical aspects. Science 156:970–973

    Article  CAS  PubMed  Google Scholar 

  • Daly JW, Spande TF (1986) Amphibian alkaloids: chemistry, pharmacology, and biology. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 4. John Wiley and Sons, New York, pp 1–274

    Google Scholar 

  • Daly JW, Brown GB, Mensah-Dwumah M, Myers CW (1978) Classifications of skin alkaloids from neotropical poison-dart frogs (Dendrobatidae). Toxicon 16:163–188

    Article  CAS  PubMed  Google Scholar 

  • Daly JW, Myers CW, Whittaker N (1987) Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibian. Toxicon 25:1023–1095

    Article  CAS  PubMed  Google Scholar 

  • Daly JW, Garraffo HM, Spande TF, Jaramillo C, Rand SA (1994) Dietary source for skin alkaloids of poison frogs (Dendrobatidae)? J Chem Ecol 20:943–955

    Article  CAS  PubMed  Google Scholar 

  • Daly JW, Kaneko T, Wilham J, Garraffo HM, Spande TF, Espinosa A, Donnelly MA (2002) Bioactive alkaloids of frog skin: combinatorial bioprospecting reveals the pumiliotoxins have an arthropod source. PNAS 99:13996–14001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly JW, Spande TF, Garraffo HM (2005) Alkaloids from amphibian skin: a tabulation of over eight hundred compounds. J Nat Prod 68:1556–1575

    Article  CAS  PubMed  Google Scholar 

  • Darst CR, Cummings ME (2006) Predator learning favours mimicry of a less-toxic model in poison frogs. Nature 440:208–211

    Article  CAS  PubMed  Google Scholar 

  • Darst CR, Cummings ME, Cannatella DC (2006) A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs. PNAS 103:5852–5857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devambez I, Ali Agha M, Mitri C, Bockaert J, Parmentier M-L, Marion-Poll F, Grau Y, Soustelle L (2013) Gαo is required for L-Canavanine detection in Drosophila. PLoS One 8:e63484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly MA (1991) Feeding patterns of the strawberry poison frog, Dendrobates pumilio (Anura: Dendrobatidae). Copeia 3:723–730

    Article  Google Scholar 

  • Dyer LA, Dobson CD, Gentry G (2003) A bioassay for insect deterrent compounds found in plant and animal tissue. Phytochem Anal 14:381–388

    Article  CAS  PubMed  Google Scholar 

  • Fritz G, Rand AS, dePamphilis CW (1981) The aposematically colored frog, Dendrobates pumilio, is distasteful to the large predatory ant, Paraponera clavata. Biotropica 13:158–159

    Article  Google Scholar 

  • Grant JB, Land B (2002) Transcutaneous amphibian stimulator (TAS): a device for the collection of amphibian skin secretions. Herpetol Rev 334:38–41

    Google Scholar 

  • Gray HM, Kaiser H, Green DM (2010) Does alkaloid sequestration protect the green poison frog Dendrobates auratus, from predator attacks? Salamandra 46:235–238

    Google Scholar 

  • Hancock RE, Scott MG (2000) The role of antimicrobial peptides in animal defenses. PNAS 97:8856–8861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hantak MM, Grant T, Reinsch S, Mcginnity D, Loring M, Toyooka N, Saporito RA (2013) Dietary alkaloid sequestration in a poison frog: an experimental test of alkaloid up taken Melanophryniscus stelzneri (Bufonidae). J Chem Ecol 39:1400–1406

    Article  CAS  PubMed  Google Scholar 

  • Hantak MM, Paluh DJ, Saporito RA (2016) Bufadienolide and alkaloid-based chemical defences in two different species of neotropical anurans are equally effective against the same arthropod predators. J Trop Ecol 32:165–169

    Article  Google Scholar 

  • Hartmann T, Theuring C, Witte L, Pasteels JM (2001) Sequestration, metabolism and partial synthesis of tertiary pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi. Insect Biochem Mol Biol 31:1041–1056

    Article  CAS  PubMed  Google Scholar 

  • Hovey KJ (2016) Sequestered alkaloid defenses in the dendrobatid poison frog Oophaga pumilio provide variable protection from microbial pathogens. John Carroll University, M.S. Thesis

    Google Scholar 

  • Hovey KJ, Viloria MO, Saporito RA (2016) Oophaga pumilio (strawberry poison frog) predator-prey interactions. Herpetol Rev 47:113–114

    Google Scholar 

  • Isman MB (1992) A physiological perspective. In: Roitberg BD, Isman MB (eds) Insect chemical ecology: an evolutionary approach. Chapman & Hall, New York, pp 156–176

    Google Scholar 

  • Jeckel AM, Grant T, Saporito RA (2015) Sequestered and synthesized chemical defenses in the poison frog Melanophryniscus moreirae. J Chem Ecol 41:505–512

    Article  CAS  PubMed  Google Scholar 

  • Jones TH, Gorman JS, Snelling RR, Delabie JHC, Blum MS, Garraffo HM, Jain P, Daly JW, Spande TF (1999) Further alkaloids common to ants and frogs: decahydroquinolines and a quinolizidine. J Chem Ecol 25:1179–1193

    Article  CAS  Google Scholar 

  • Lachaud J (1990) Foraging activity and diet in some Neotropical ponerine ants. I. Ectatomma ruidum Roger (hymenoptera, Formicidae). Folia Entomológica Mexicana 78:241–256

    Google Scholar 

  • Lee Y, Moon SJ, Wang Y, Montell C (2015) A Drosophila gustatory receptor required for strychnine sensation. Chem Senses 40:525–533

    Article  PubMed  PubMed Central  Google Scholar 

  • Levings SC, Franks NR (1982) Patterns of nest dispersion in a tropical ground ant community. Ecology 63:338–344

    Article  Google Scholar 

  • Maan ME, Cummings ME (2012) Poison frog colors are honest signals of toxicity, particularly for bird predators. Am Nat 179:E1–14

    Article  PubMed  Google Scholar 

  • Martins CH, Cunha B, Solferini VN, Trigo JR (2015) Feeding on host plants with different concentrations and structures of pyrrolizidine alkaloids impacts the chemical-defense effectiveness of a specialist herbivore. PLoS One 10:e0141480

    Article  PubMed  PubMed Central  Google Scholar 

  • McGlynn TP, Dunn T, Wayman E, Romero A (2010) A thermophile in the shade: light-directed nest relocation in the costa Rican ant Ectatomma ruidum. J Trop Ecol 26:559–562

    Article  Google Scholar 

  • Meunier N, Marion-Poll F, Rospars J-P, Tanimura T (2003) Peripheral coding of bitter taste in Drosophila. J Neurobiol 56:139–152

    Article  PubMed  Google Scholar 

  • Mina AE, Ponti AK, Woodcraft NL, Johnson EE, Saporito RA (2015) Variation in alkaloid-based microbial defenses of the dendrobatid poison frog Oophaga pumilio. Chemoecology 25:169–178

    Article  CAS  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  Google Scholar 

  • Molleman F, Whitaker MR, Carey JR (2010) Rating palatability of butterflies by measuring ant feeding behavior. Entomol Ber 70:52–62

    Google Scholar 

  • Murray EM, Bolton SK, Berg T, Saporito RA (2016) Arthropod predation in a dendrobatid frog: does life stage matter? Zoology 119:169–174

    Article  PubMed  Google Scholar 

  • Opitz SEW, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154

    Article  CAS  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, United Kingdom

    Book  Google Scholar 

  • Santos JC, Cannatella DC (2011) Phenotypic integration emerges from aposematism and scale in poison frogs. PNAS 108:6175–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos JC, Tarvan RD, O’Connell LA (2016) A review of chemical defense in poison frogs (Dendrobatidae): ecology, pharamacokinetics, and autoresistance. In: Schulte BA et al (eds) Chemical signals in vertebrates 13. Springer International Publishing, Switzerland, pp 305–337

    Chapter  Google Scholar 

  • Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF, Daly JW (2006) Geographic and seasonal variation in alkaloids-based chemical defenses of Dendrobates pumilio from Bocas Del Toro, Panama. J Chem Ecol 32:795–814

    Article  CAS  PubMed  Google Scholar 

  • Saporito RA, Donnelly MA, Jain P, Garraffo HM, Spande TF, Daly JW (2007a) Spatial and temporal patterns of alkaloids variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon 50:757–778

    Article  CAS  PubMed  Google Scholar 

  • Saporito RA, Donnelly MA, Norton R, Garraffo HM, Spande TF, Daly JW (2007b) Oribatid mites as a major dietary source for alkaloids in poison frogs. PNAS 104:8885–8890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saporito RA, Spande TF, Garraffo HM, Donnelly MA (2009) Arthropod alkaloids in poison frogs: a review of the ‘dietary hypothesis’. Heterocycles 79:277–297

    Article  CAS  Google Scholar 

  • Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF (2010a) Sex-related differences in alkaloid chemical defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. J Nat Prod 73:317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saporito RA, Isola M, Maccachero VC, Condon K, Donnelly MA (2010b) Ontogenetic scaling of poison glands in a dendrobatid poison frog. J Zool 282:238–245

    Article  Google Scholar 

  • Saporito RA, Donnelly MA, Spande TF, Garraffo HM (2012) A review of chemical ecology in poison frogs. Chemoecology 22:159–168

    Article  CAS  Google Scholar 

  • Saporito RA, Norton RA, Garraffo HM, Spande TF (2015) Taxonomic distribution of defensive alkaloids in Nearctic oribatid mites (Acari, Oribatida). Exp Appl Acarol 67:317–333

    Article  CAS  PubMed  Google Scholar 

  • Savitzky AH, Hutchinson DA, Saporito RA, Burghardt GM, Lillywhite HB, Meinwald J (2012) Sequestered defensive toxins in tetrapod vertebrates: principles, patterns, and prospects for future studies. Chemoecology 22:141–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte LM, Saporito RA, Davison I, Summers K (2016) The palatability of neotropical poison frogs in predator-prey systems: do alkaloids make the difference? Biotropica 49:23–26

  • Sellier MJ, Reeb P, Marion-Poll F (2010) Consumption of bitter alkaloids in Drosophila melanogaster in multiple-choice test conditions. Chem Senses 36:323–334

    Article  PubMed  Google Scholar 

  • Silva KL, Trigo JR (2002) Structure-activity relationships of pyrrolizidine alkaloids in insect chemical defense against the orb-weaving spider Nephila clavipes. J Chem Ecol 28:657–668

    Article  CAS  PubMed  Google Scholar 

  • Speed MP, Ruxton GD, Mappes J, Sherratt TN (2012) Why are defensive toxins so variable? An evolutionary perspective. Biol Rev 87:874–884

    Article  PubMed  Google Scholar 

  • Stuckert AM, Venegas PJ, Summers K (2014) Experimental evidence for predator learning and Müllerian mimicry in Peruvian poison frogs (Ranitomeya, Dendrobatidae). Evol Ecol 28:413–426

    Article  Google Scholar 

  • Stynoski JL, Torresz-Mendoza Y, Sasa-Marin M, Saporito RA (2014a) Evidence of maternal provisioning of alkaloid-based chemical defenses in the strawberry poison frog Oophaga pumilio. Ecology 95:587–593

    Article  PubMed  Google Scholar 

  • Stynoski JL, Shelton G, Stynoski P (2014b) Maternally derived chemical defences are an effective deterrent against some predators of poison frog tadpoles (Oophaga pumilio). Biol Lett 10:20140187

    Article  PubMed  PubMed Central  Google Scholar 

  • Summers K, Speed MP, Blount JD, Stuckert AM (2015) Are aposematic signals honest? A review. J Evol Biol 28:1583–1599

    Article  CAS  PubMed  Google Scholar 

  • Szelistowski WA (1985) Unpalatability of the poison arrow frog Dendrobates pumilio to the ctenid spider Cupiennius coccineus. Biotropica 17:345–346

    Article  Google Scholar 

  • Termonia A, Pasteels JM, Windsor DM, Milinkovitch MC (2001) Dual chemical sequestration: a key mechanism in traditions among ecological specialization. Proc R Soc Lond B Biol Sci 269:1–6

    Article  Google Scholar 

  • Weldon PJ, Cardoza YJ, Vander Meer RK, Hoffmann WC, Daly JW, Spande TF (2013) Contact toxicities of anuran skink alkaloids against fire ant (Solenopsis invicta). Naturwissenschaften 100:185–192

    Article  CAS  PubMed  Google Scholar 

  • Williams BL (2010) Behavioral and chemical ecology of marine organisms with respect to tetrodotoxin. Marine Drugs 8:381–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5:300–307

    Article  CAS  PubMed  Google Scholar 

  • Yeager J (2013) Dendrobatidae and Bufo coniferus. Defense Herpetol Rev 44:4

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Organization for Tropical Studies La Selva Biological Research Station, Canadian Organization for Tropical Education and Rainforest Conservation Caño Palma Biological Station, Smithsonian Tropical Research Institute, Bungalows Kiré, and Hotel Río Palmas, Samasati Retreat, and Emily Khazan, Scott McKenzie, and Andres Vega for their support in carrying out this research. We would also like to thank the Panamanian and Costa Rican governments for permitting this research. We thank C. Anthony, N. Bezca, A. Blanchette, R. Drenovsky, M. Gade, K. Hovey, M. Russell, E. Seiter, and N. Woodcraft for editorial comments to the manuscript, and M. Viloria and M. Russell for their help in frog collection. John Carroll University and the Exploration Fund Grant provided support for this study from The Explorers Club (SKB). All collection of O. pumilio was approved by the Convention on International Trade and Exportation of Species (CITES) research and collection permit (SEX/A-129-06) issued by the Panamanian government and by CITES research and collection permit 2015-CR1420/SJ(#S1487) issued by the Costa Rican government. The John Carroll University Institutional Animal Care and Use Committee (IACUC protocol #1101) approved all methods used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph A. Saporito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolton, S.K., Dickerson, K. & Saporito, R.A. Variable Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio are Perceived as Differences in Palatability to Arthropods. J Chem Ecol 43, 273–289 (2017). https://doi.org/10.1007/s10886-017-0827-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0827-y

Keywords

Navigation