Skip to main content
Log in

d-Pinitol in Fabaceae: an Oviposition Stimulant for the Common Grass Yellow Butterfly, Eurema mandarina

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The common grass yellow butterfly, Eurema mandarina (formerly Eurema hecabe mandarina) (Lepidoptera, Pieridae), recently has been separated taxonomically from a subtropical population of Eurema hecabe in Japan. This species is widely distributed in the temperate region of Japan, and feeds mainly on various ligneous plants within the Fabaceae. We attempted to identify an oviposition stimulant for E. mandarina from its primary hosts, Albizia julibrissin and Lespedeza cuneata. In both hosts, crude extract and an aqueous fraction elicited oviposition responses from gravid females. A polar subfraction of the aqueous fraction also stimulated high oviposition-stimulatory activity, comparable to the original aqueous fraction, suggesting that E. mandarina females use water-soluble compounds for host recognition. Subsequent activity-directed fractionation by ion exchange chromatography indicated that one of the key substances was contained in the neutral/amphoteric fraction. Chemical analyses revealed that the active fractions of both hosts contained d-(+)-pinitol as the major component. We examined female responses to authentic d-pinitol and found that it induced oviposition responses at concentrations greater than 0.1 %. Since this cyclitol is omnipresent in Fabaceae, we conclude that d-pinitol plays a role in mediating oviposition of E. mandarina on fabaceous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banno H (1984) The oviposition preference and larval food utilization in Eurema hecabe (Linnaeus) (Pieridae). Tyô to Ga 35:80–90

    Google Scholar 

  • Braby MF (2005) Provisional checklist of genera of the pieridae (Lepidoptera: papilionoidea). Zootaxa 832:1–16

    Google Scholar 

  • Braby MF, Trueman JWH (2006) Evolution of larval host plant associations and adaptive radiation in pierid butterflies. J Evol Biol 19:1677–1690

    Article  CAS  PubMed  Google Scholar 

  • Braby MF, Vila R, Pierce NE (2006) Molecular phylogeny and systematics of the pieridae (Lepidoptera: papilionoidea): higher classification and biogeography. Zool J Linnean Soc 147:239–275

    Article  Google Scholar 

  • Chen JG, Dai G-H (2014) Effect of d-pinitol isolated and identified from Robinia pseudoacacia against cucumber powdery mildew. Sci Hortic 176:38–44

    Article  CAS  Google Scholar 

  • Chew FS, Renwick JAA (1995) Host plant choice in Pieris butterflies. In: Carde RT, Bell WJ (eds) Chemical ecology of insects 2. Chapman & Hall, New York, pp. 214–238

    Chapter  Google Scholar 

  • Chew FS, Robbins RK (1984) Egg-laying in butterflies. In: Vane-Wright RI, Ackery PR (eds) . The biology of butterflies Academic Press, London, pp. 65–79

    Google Scholar 

  • Chiera JM, Streeter JG, Finer JJ (2006) Ononitol and pinitol production in transgenic soybean containing the inositol methyl transferase gene from Mesembryanthemum crystallinum. Plant Sci 171:647–654

    Article  CAS  Google Scholar 

  • Dittrich P, Brandl A (1987) Revision of the pathway of d-pinitol formation in Leguminosae. Phytochemistry 26:1925–1926

    Article  CAS  Google Scholar 

  • Dreyer DL, Binder RG, Chan BG, Waiss ACJR, Hartwig EE, Beland GL (1979) Pinitol, a larval growth inhibitor for Heliothis zea in soybeans. Experientia 35:1182–1183

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich PR (1958) The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera: Papilionoidae). Univ Kansas Sci Bull 39:305–370

    Google Scholar 

  • Ferrer-Paris JR, Sánchez-Mercado A, Viloria AL, Donaldson J (2013) Congruence and diversity of butterfly-host plant associations at higher taxonomic levels. PLoS One 8:e63570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda K (1990) Identification of host-pant chemicals stimulating oviposition by swallowtail butterfly, Papilio protenor. J Chem Ecol 16:325–337

    Article  CAS  PubMed  Google Scholar 

  • Honda K (1995) Chemical basis of differential oviposition by lepidopterous insects. Arch Insect Biochem Physiol 30:1–23

    Article  CAS  Google Scholar 

  • Honda K, Nishii W, Hayashi N (1997) Oviposition stimulants for sulfur butterfly, Colias erate poliographys: Cyanoglucoside as synergists involved in host preference. J Chem Ecol 23:323–331

    Article  CAS  Google Scholar 

  • Honda K, Minematsu H, Muta K, Ômura H, Nishii W (2012) d-pinitol as a key oviposition stimulant for sulfur butterfly, Colias erate: chemical basis for female acceptance of host- and non-host plants. Chemoecology 22:55–63

    Article  CAS  Google Scholar 

  • Huang X, Renwick JAA (1993) Differential selection of host plants by two Pieris species: the role of oviposition stimulants and deterrents. Entomol Exp Appl 68:59–69

    Article  Google Scholar 

  • Huang X, Renwick JAA (1994) Relative activities of glucosinolates as oviposition stimulants for Pieris rapae and P. napi oleracea. J Chem Ecol 20:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Renwick JAA, Sachdev-Gupta K (1993) Oviposition stimulants and deterrents regulating differential acceptance of Iberis amara by Pieris rapae and P. napi oleracea. J Chem Ecol 19:1645–1663

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Renwick JAA, Sachdev-Gupta K (1994) Oviposition stimulants in Barbarea vulgaris for Pieris rapae and P. napi oleracea: isolation and differential activity. J Chem Ecol 20:423–438

    Article  CAS  PubMed  Google Scholar 

  • Janz N, Nylin S (1998) Butterflies and plants: A phylogenetic study. Evolution 52:486–502

    Article  Google Scholar 

  • Kato Y (1999) Fringe colour, seasonal morph and host-plant use of the pierid butterfly, Eurema hecabe (L.) (Lepidoptera, Pieridae) on Okinawa-jima Island. Trans lepid Soc Jpn 50:111–121 (in Japanese with English summary)

    Google Scholar 

  • Kato Y (2000a) Does mating occur among populations of two types in the butterfly Eurema hecabe (L.) (Lepidoptera, Pieridae)? Trans lepid Soc Jpn 52:63–66 (in Japanese with English summary)

    Google Scholar 

  • Kato Y (2000b) Host-plant adaptation in two sympatric types of the butterfly Eurema hecabe (L.) (Lepidoptera: pieridae). Entomol Sci 3:459–463

    Google Scholar 

  • Kato Y, Yata O (2005) Geographic distribution and taxonomical status of two types of Eurema hecabe (L.) (Lepidoptera, Pieridae) in south-western Japan and Taiwan. Trans lepid Soc Jpn 56:171–183 (in Japanese with English summary)

    Google Scholar 

  • Kato Y, Hiroki M, Handa H (1992) Interpopulation variation in adaptation of Eurema hecabe (Lepidoptera, pieridae) to host plant. Jpn J Entomol 60:749–759

    Google Scholar 

  • Kobayashi A, Hiroki M, Kato Y (2001) Sexual isolation between two sympatric types of the butterfly, Eurema hecabe (L.). J Insect Behav 14:353–362

    Article  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  Google Scholar 

  • Narita S, Nomura M, Kato Y, Fukatsu T (2006) Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol Ecol 15:1095–1108

    Article  CAS  PubMed  Google Scholar 

  • Narita S, Nomura M, Kato Y, Yata O, Kageyama D (2007) Molecular phylogeography of two sibling species of Eurema butterflies. Genetica 131:241–253

    Article  CAS  PubMed  Google Scholar 

  • Negishi O, Mun’im A, Negishi Y (2015) Content of methylated inositols in familiar edible plants. J Agric Food Chem 63:2683–2688

    Article  CAS  PubMed  Google Scholar 

  • Nishida R (2014) Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites. Biosci Biotechnol Biochem 78:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nishida R, Fukami H (1989) Oviposition stimulants of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous. J Chem Ecol 15:2565–2575

    Article  CAS  PubMed  Google Scholar 

  • Nishida R, Ohsugi T, Kokubo S, Fukami H (1987) Oviposition stimulants of a Citrus-feeding swallowtail butterfly, Papilio xuthus L. Experientia 43:342–344

    Article  CAS  Google Scholar 

  • Numata A, Hokimoto K, Shimada A, Yamaguchi H, Takaishi K (1978) Feeding stimulants for the larvae of the yellow butterfly, Eurema hecabe mandarina (Lepidoptera: pieridae). Appl Entomol Zool 13:133–135

    CAS  Google Scholar 

  • Numata A, Hokimoto K, Shimada A, Yamaguchi H, Takaishi K (1979) Plant constituents biologically active to insects. I. Feeding stimulants for the larvae of the yellow butterfly. Eurema hecabe mandarina. Chem Pharm Bull 27:602–608

    Article  CAS  Google Scholar 

  • Numata A, Yamaguchi H, Hokimoto K, Ohtani M, Takaishi K (1985) Host-plant selection by the yellow butterfly larvae, Eurema hecabe mandarina (Lepidoptera: pieridae): attractants and arrestants. Appl Entomol Zool 20:314–321

    Google Scholar 

  • Obendorf RL, Sensenig EM, Wu J, Ohashi M, O’sullivan TE, Kosina SM, Schnebly SR (2008) Soluble carbohydrates in mature soybean seed after feeding d-chiro-inositol, myo-inositol, or d-pinitol to stem-leaf-pod explants of low-raffinose, low-stachyose lines. Plant Sci 175:650–655

    Article  CAS  Google Scholar 

  • Ohsugi T, Nishida R, Fukami H (1991) Multi-component system of oviposition stimulants for a Rutaceae-feeding swallowtail butterfly, Papilio xuthus (Lepidoptera: Papilionidae. Appl Entomol Zool 26:29–40

    CAS  Google Scholar 

  • Papaj DR, Feeny P, Sachdev-Gupta K, Rosenberry L (1992) d-(+)-pinitol, an oviposition stimulant for the pipevine swallowtail butterfly, Battus philenor. J Chem Ecol 18:799–815

    Article  CAS  PubMed  Google Scholar 

  • Phillips DV, Wilson DO, Dougherty DE (1984) Soluble carbohydrates in legumes and nodulated nonlegumes. J Agric Food Chem 32:1289–1291

    Article  CAS  Google Scholar 

  • Poongothai G, Sripathi SK (2013) A review of insulinomimetic pinitol from plants. Int. J Pharm Bio Sci 4:992–1009

    CAS  Google Scholar 

  • Reese JC, Chan BG, Waiss ACJR (1982) Effects of cotton condensed tannin, maysin (corn) and pinitol (soybeans) on Heliothis zea growth and development. J Chem Ecol 8:1429–1436

    Article  CAS  PubMed  Google Scholar 

  • Renwick JAA (2002) The chemical world of crucivores: lures, treats and traps. Entomol Exp Appl 104:35–42

    Article  CAS  Google Scholar 

  • Renwick JAA, Chew FS (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39:377–400

    Article  Google Scholar 

  • Renwick JAA, Radke CD, Sachdev-Gupta K (1989) Chemical constituents of Erysimum cheiranthoides deterring oviposition by the cabbage butterfly, Pieris rapae. J Chem Ecol 15:2161–2169

    Article  CAS  PubMed  Google Scholar 

  • Renwick JAA, Radke CD, Sachdev-Gupta K, Städler E (1992) Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: pieridae) on cabbage. Chemoecology 3:33–38

    Article  CAS  Google Scholar 

  • Sachdev-Gupta K, Renwick JAA, Radke CD (1990) Isolation and identification of oviposition deterrents to cabbage butterfly, Pieris rapae, from Erysimum cheiranthoides. J Chem Ecol 16:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Savela M (2014) Lepidoptera and some other life forms. www.nicfunetfi/pub/sci/bio/life/insecta/lepidoptera/ditrysia/papilionoidea/pieridae/coliadinae/ Accessed 16 Feb 2016

  • Streeter JG, Lohnes DG, Fioritto RJ (2001) Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell Environ 24:429–438

    Article  CAS  Google Scholar 

  • Thompson JN, Pellmyr O (1991) Evolution of oviposition behavior and host preference in Lepidoptera. Annu Rev Entomol 36:65–89

    Article  Google Scholar 

  • van Loon JJA, Blaakmer A, Griepink FC, van Beek TA, Schoonhoven LM, de Groot A (1992) Leaf surface compound from Brassica oleracea (Cruciferae) induces oviposition by Pieris brassicae (Lepidoptera: pieridae). Chemoecology 3:39–44

    Article  Google Scholar 

  • Wahlberg N, Braby MF, Brower AVZ, Jong R DE, Lee M-M, Nylin S, Pierce NE, Sperling FAH, Vila R, Warren AD, Zakharov E (2005) Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc R Soc B 272:1577–1586.

  • Wink M (2013) Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot 89:164–175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The HR-MS and the optical rotation measurements were conducted using a Thermo Fischer LTQ Orbitrap XL hybrid mass spectrometer and a JASCO DIP-370 spectropolarimeter, respectively, at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Ômura.

Electronic supplementary material

ESM 1

(DOCX 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukae, Sy., Ohashi, T., Matsumoto, Y. et al. d-Pinitol in Fabaceae: an Oviposition Stimulant for the Common Grass Yellow Butterfly, Eurema mandarina . J Chem Ecol 42, 1122–1129 (2016). https://doi.org/10.1007/s10886-016-0775-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-016-0775-y

Keywords

Navigation