Skip to main content
Log in

Abutilon theophrasti’s Defense Against the Allelochemical Benzoxazolin-2(3H)-One: Support by Actinomucor elegans

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Abutilon theophrasti Medik., previously found to be rather insensitive to benzoxazinoid containing rye mulch and the allelochemical benzoxazolin-2(3H)-one (BOA), can be associated with the zygomycete Actinomucor elegans, whereby the fungus colonizes the root relatively superficially and mainly in the maturation zone. The fungus mitigates necrosis of the cotyledons when seedlings are incubated with 2 mM BOA, in contrast to those that lack the fungus. In liquid cultures of the fungus, tryptophan was identified. The accumulation of tryptophan is increased in presence of BOA. This amino acid seems to be important in protecting Abutilon against BOA and its derivatives since it suppressed the accumulation of BOA derived, highly toxic 2-aminophen-oxazin-3-one (APO) in the medium and on the root surface during BOA incubations of Abutilon seedlings. Although A. elegans is insensitive to BOA and APO, the fungus is not able to protect the plant against harmful effects of APO, when seedlings are treated with the compound. Abutilon can detoxify BOA via BOA-6-OH glucosylation probably by a cell wall associated glucosyltransferase, but only low amounts of the product accumulate. Low tryptophan concentrations can contribute to a degradation of the toxic intermediate BOA-6-OH by Fenton reactions, whereby the amino acid is oxidized. One of the oxidation products was identified as 4(1H)-quinolinone, which is the core substructure of the quorum sensing molecule 2-heptyl-3-hydroxy-4-quinolone. The mutualistic association of Abutilon theophrasti with Actinomucor elegans is considered as opportunistic and facultative. Such plant-fungus associations depend rather likely on environmental conditions, such as the mode of fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amsellen Z, Cohen BA, Gressel J (2002) Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control. Nat Biotechnol 20:1035–1039

    Article  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    CAS  PubMed  Google Scholar 

  • Balah MA, Nassar MI (2011) Allelopathic constituents from Abutilon theophrasti aerial parts to others weeds. Res J Agric Biol Sci 7:243–250

    CAS  Google Scholar 

  • Barazani O, Friedman J (2001) Allelopathic bacteria and their impact on higher plants. Crit Rev Microbiol 27:41–57

    Article  CAS  PubMed  Google Scholar 

  • Barkosky RR, Einhellig FA (2003) Allelopathic interference of plant-water relationships by para-hydroxybenzoic acid. Bot Bull Acad Sin 44:53–58

    CAS  Google Scholar 

  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169:895–904

    Article  PubMed Central  PubMed  Google Scholar 

  • Braeken K, Daniels R, Ndayizeye M, Vanderleyden J, Michiels J (2008) Quorum sensing in bacteria-plant interactions. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence, vol 15, Soil Biol., pp 265–289. doi:10.1007/978-3-540-75575-3

    Chapter  Google Scholar 

  • Brazelton JN, Pfeufer EE, Sweat T, Mcspadden A, Gardener BB, Coenen C (2008) 2,4-Diacetylphloroglucinol alters plant root development. Mol Plant Microbe Interact 21:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza A, Tohge T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. DOI:10.1371/journal.ppat.1003221

  • Chee-Sanford JC (2008) Weed seeds as nutritional resources for soil Ascomycota and characterization of specific associations between plant and fungal species. Biol Fertil Soils 44:763–771

    Article  Google Scholar 

  • Cohen MF, Gurung S, Fukuto JM, Yamasaki H (2014) Controlled free radical attack in the apoplast: a hypothesis for roles of O, N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla. Plant Sci 217:120–126

    Article  PubMed  Google Scholar 

  • Cortés JA, Mendiola MA, Castejón M (2010) Competition of velvetleaf (Abutilon theophrasti M.) weed with cotton (Gossypium hirsutum L.). Economic damage threshold. Span J Agric Res 8:391–399

    Article  Google Scholar 

  • Cotton CE, Einhellig FA (1980) Allelopathic mechanisms of velvet leaf (Abutilon theophrasti) medic malvaceae on soybean. Am J Bot 67:1407–1413

    Article  Google Scholar 

  • Feksa LR, Latini A, Rech VC, Bartels-Feksa P, Koch GDW, Arevalo Amaral MF, Leipnitz G, Dutra-Filho CS, Wajner M, Wannmacher CMD (2008) Tryptophan administration induces oxidative stress in brain cortex of rats. Metab Brain Dis 23:221–233

    Article  CAS  PubMed  Google Scholar 

  • Friebe A, Wieland I, Schulz M (1996) Tolerance of Avena sativa to the allelochemical benzoxazolinone. Degradation of BOA by root-colonizing bacteria. J Appl Bot Angew Bot 70:150–154

    CAS  Google Scholar 

  • Friebe A, Vilich V, Hennig L, Kluge M, Sicker D (1998) Detoxification of benzoxazolinone allelochemicals from wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum. Appl Environ Microbiol 64:2386–2391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gavazzi C, Schulz M, Marocco A, Tabaglio V (2010) Sustainable weed control by allelochemicals from rye cover crops: from the greenhouse to field evidence. Allelopathy J 25:259–273

    Google Scholar 

  • Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102

    Article  CAS  PubMed  Google Scholar 

  • Glenn AE, Hinton DM, Yates IE, Bacon CW (2001) Detoxification of corn antimicrobial compounds as the basis for isolations Fusarium verticillioides and some other Fusarium species from Corn. Appl Environ Microbiol 67:2973–2981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glenn AE, Meredith FI, Morrison WH III, Bacon CW (2003) Identification of intermediate and branch metabolites resulting from biotransformation of 2-benzoxazolinone by Fusarium verticillioides. Appl Environ Microbiol 69:3165–3169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grubišič D, Igrc Barčić J, Barić B, Čuljak GT (2008) Possibilities for biological control of velvetleaf (Abutilon theophrasti Medik.) with phytophagous insects. Entomol Croat 10:67–86

    Google Scholar 

  • Hoffman ML, Weston LA, Snyder JC, Regnier ER (1996) Separating the effects of sorghum (Sorghum bicolor) and rye (Secale cereale) root and shoot residues on weed development. Weed Sci 44:402–407

    CAS  Google Scholar 

  • Hofmann D, Knop M, Hao H, Hennig L, Sicker D, Schulz M (2006) Glucosides from MBOA and BOA detoxification by Zea mays and Portulaca oleracea. J Nat Prod 69:34–37

    Article  CAS  PubMed  Google Scholar 

  • Idris EE, Iglesias DJI, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Int 20:619–626

    Article  CAS  Google Scholar 

  • Ito H, Gray WM (2006) A gain-of-function mutation in the Arabidopsis pleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides. Plant Physiol 142:63–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Int 19:250–256

    Article  CAS  Google Scholar 

  • Kaneko M, Tanimoto E (2009) Auxin-regulation of hyphal elongation and spore germination in arbuscular mycorrhizal fungus, Gigaspora margarita. International Symposium “Root Research and Applications”RootRAP, Boku – Vienna, Austria, 2–4 September 2009

  • Kaur R, Gonzáles WL, Llambi LD, Soriano PJ, Callaway RM et al (2012) Community impacts of Prosopis juliflora invasion: biogeographic and congeneric comparisons. PLoS One 7:e44966. doi:10.1371/journal.pone.-0044966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    CAS  PubMed  Google Scholar 

  • Komatsu S (2008) Plasma membrane proteome in Arabidopsis and rice. Proteomics 8:4137–4145

    Article  CAS  PubMed  Google Scholar 

  • Kremer RJ (1986) Antimicrobial activity of velvetleaf (Abutilon theophrasti) seeds. Weed Sci 34:617–622

    Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS (Fed. Eur. Microbiol. Soc.). Microbiol Ecol 22:325–334

    Article  CAS  Google Scholar 

  • Liskay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    Article  Google Scholar 

  • Liu G, Greenshields DL, Sammynaiken R, Hirji RN, Selvaraj G, Wei Y (2007) Targeted alterations in iron homeostasis underlie plant defense responses. J Cell Sci 120:596–605

    Article  CAS  PubMed  Google Scholar 

  • Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp. effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17:25–32

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Martinuz A, Schouten A, Sikora RA (2013) Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. BioControl 58:95–104

    Article  Google Scholar 

  • Meinlschmidt E (2004) Gebietsfremde potenziell invasive Ackerunkräuter in Sachsen. Gesunde Pflanzen 56:86–92

    Article  Google Scholar 

  • Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150:1855–1865

    Article  PubMed Central  PubMed  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Nakajima E, Fujii Y, Yamada K, Shigemori H, Hasegawa K (2003) Leaching of the allelopathic substance, L-tryptophan from the foliage of mesquite (Prosopis juliflora (Sw.) DC.) plants by water spraying. Plant Growth Regul 40:49–52

    Article  CAS  Google Scholar 

  • Quiroz-Villareal S, Zavala Hernández N, Luna-Romero I, Amora-Lazcano E, Rodríguez-Dorantes A (2012) Assessment of plant growth promotion by rhizobacteria supplied with tryptophan as phytohormone production elicitor on Axonopus affinis. Agric Sci Res J 2:574–580

    Google Scholar 

  • Redman RS, Kim Y, Woodward CJDA, Greer C, Espino L et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rosário M, Domingues M, Domingues P, Reis A, Fonseca C, Amado FML, Ferrer-Correia AJV (2003) Identification of oxidation products and free radicals of tryptophan by mass spectrometry. J Am Soc Mass Spectrom 14:406–416

    Article  Google Scholar 

  • Roschzttardtz H, Séguéla-Arnaud M, Briat JF, Vert G, Curie C (2011) The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell 23:2725–2737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu RJ, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J Bacteriol 190:7200–7208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sánchez-Moreiras AM, Reigosa MJ (2005) Whole plant response of lettuce after root exposure to BOA (2(3H)-benzoxazolinone). J Chem Ecol 31:2689–2703

    Article  PubMed  Google Scholar 

  • Sarwar M, Kremer RJ (1995) Enhanced suppression of plant growth through production of L. tryptophan-derived compounds by deleterious bacteria. Plant Soil 172:261–269

    Article  CAS  Google Scholar 

  • Schulz M, Wieland I (1999) Variations in metabolism of BOA among species in various field communities - biochemical evidence for co-evolutionary processes in plant communities? Chemoecology 9:133–141

    Article  CAS  Google Scholar 

  • Schulz M, Sicker D, Baluska F, Sablofski T, Scherer HW, Ritter FM (2012a) Benzoxazolinone detoxification and degradation – a molecule’s journey. In: Abd El-Ghany Hasaneen MN (ed) Herbicides - properties. Synthesis and Control of Weeds. InTech, Rijeka, pp 17–42

    Google Scholar 

  • Schulz M, Marocco A, Tabaglio V (2012b) BOA detoxification of four summer weeds during germination and seedling growth. J Chem Ecol 38:933–946

    Article  CAS  PubMed  Google Scholar 

  • Schulz M, Tabaglio V, Marocco A, Macias FA, Molinillo JMG (2013a) Benzoxazinoids in rye allelopathy – from discovery to application in sustainable weed control and organic farming. J Chem Ecol 39:154–174

    Article  CAS  PubMed  Google Scholar 

  • Schulz M, Knop M, Muellenborn C, Steiner U (2013b) Root-associated microorganisms prevent caffeine accumulation in shoots of Salvia officinalis L. Int J Agric For 3:152–158

    Google Scholar 

  • Selosse MA, Le Tacon F (1998) The land flora: a phototroph-fungus partnership? Trends Ecol Evol 13:15–20

    Article  CAS  PubMed  Google Scholar 

  • Sicker D, Schulz M (2002) Benzoxazinones in plants: occurrence, synthetic access, and biological activity. Stud Nat Prod Chem 27:185–232

    Article  CAS  Google Scholar 

  • Sicker D, Schneider B, Hennig L, Knop M, Schulz M (2001) Glucoside carbamate from benzoxazolin-2(3H)-one detoxification in extracts and exudates of corn roots. Phytochemistry 58:819–825

    Article  CAS  PubMed  Google Scholar 

  • Tabaglio V, Gavazzi C, Schulz M, Marocco A (2008) Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agron Sustain Dev 28:397–401

    Article  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taghavi S, van der Lelie D, Hoffman A, Zhang Y-B, Walla MD, Vangronsveld J, Newman L, Monchy S (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:e1000943. doi:10.1371/journal.pgen.1000943

    Article  PubMed Central  PubMed  Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560–573

    Article  Google Scholar 

  • Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT (2005) Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. Mycologia 97:269–285

    Article  CAS  PubMed  Google Scholar 

  • Tefera T, Vidal S (2009) Effects of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54:663–669

    Article  Google Scholar 

  • Tiourebaev KS, Nelson S, Zidack NK, Kaleyva GT, Pilgeram AL, Anderson TW, Sands DC (1999) Amino acid excretion enhances virulence of bioherbicides. Proceedings of the X International Symposium on Biological Control of Weeds, Montana State University, Bozeman, Montana, USA,cmb 4–14 July 1999

  • Tsompo A, Diehl-Jones BW, Aluko R, Kitts DD, Elisia I, Friel FK (2009) Tryptophan released from mother’s milk has antioxidant properties. Pediat Res 66:614–618

    Article  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Müller D, Legendre L, Wisbiewski-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Vuorela H, Vuorela P, Törnquist K, Alaranta S (1997) Calcium channel blocking activity: screening methods for plant derived compounds. Int J Phytother Phytopharm 4:167–180

    CAS  Google Scholar 

  • Wei W, Isobe K, Shiratori Y, Nishizawa T, Ohte N, Otsuka S, Senoo K (2014) N2O emission from cropland field soil through fungal denitrification after surface applications of organic fertilizer. Soil Biol Biochem 69:157–167

    Article  CAS  Google Scholar 

  • Weston LA, Ryan PR, Watt M( (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Lee T, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shisky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Chapter  Google Scholar 

  • Wieland I, Kluge M, Schneider B, Schmidt J, Sicker D, Schulz M (1998) 3-ß-D-Glucopyranosyl-benzoxazolin-2(3H)-one - a detoxification product of benzoxazolinone in oat roots. Phytochemistry 49:719–722

    Article  CAS  Google Scholar 

  • Wieland I, Friebe A, Kluge M, Sicker D, Schulz M (1999). Detoxification of 2-(3H)-benzoxazolinone in higher plants. In: Macias FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Recent advances in allelopathy: A science for the future. Universidad Cadiz (E), pp 47–56

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 5:707–735

    Article  Google Scholar 

  • Zhou J, Tao B, Messersmith CG, Nalewaja JD (2007) Glyphosate efficacy on velvetleaf (Abutilon theophrasti) is affected by stress. Weed Sci 55:240–244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Brigitte Dresen-Scholz (IMBIO) for technical support with the initial isolation steps of A. elegans from seed coats, and Herbiseed, Twyford, UK, for additional Abutilon seeds of different harvests. We thank Dieter Sicker, Institut für Organische Chemie, University of Leipzig, Germany, for BOA-6-OH, Dieter Sicker and Georg Hölzl (IMBIO) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot Schulz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kia, S.H., Schulz, M., Ayah, E. et al. Abutilon theophrasti’s Defense Against the Allelochemical Benzoxazolin-2(3H)-One: Support by Actinomucor elegans . J Chem Ecol 40, 1286–1298 (2014). https://doi.org/10.1007/s10886-014-0529-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0529-7

Keywords

Navigation