Skip to main content
Log in

Relative Seed and Fruit Toxicity of the Australian Cycads Macrozamia miquelii and Cycas ophiolitica: Further Evidence for a Megafaunal Seed Dispersal Syndrome in Cycads, and Its Possible Antiquity

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

An apparent contradiction in the ecology of cycad plants is that their seeds are known to be highly poisonous, and yet they seem well adapted for seed dispersal by animals, as shown by their visually conspicuous seed cones and large seeds presented within a brightly colored fleshy “fruit” of sarcotesta. We tested if this sarcotesta could function as a reward for cycad seed dispersal fauna, by establishing if the toxic compound cycasin, known from the seeds, is absent from the sarcotesta. The Australian cycads Macrozamia miquelii and Cycas ophiolitica were tested (N = 10 individuals per species) using gas chromatography / mass spectrometry. Cycasin was detected at 0.34 % (fresh weight) in seed endosperm of M. miquelii and 0.28 % (fresh weight) in seed endosperm of C. ophiolitica. Cycasin was absent from the sarcotesta of the same propagules (none detected in the case of M. miquelii, and trace quantities detected in sarcotesta of only four of the ten C. ophiolitica propagules). This laboratory finding was supported by field observations of native animals eating the sarcotesta of these cycads but discarding the toxic seed intact. These results suggest cycads are adapted for dispersal fauna capable of swallowing the large, heavy propagules whole, digesting the non-toxic sarcotesta flesh internally, and then voiding the toxic seed intact. Megafauna species such as extant emus or cassowaries, or extinct Pleistocene megafauna such as Genyornis, are plausible candidates for such dispersal. Cycads are an ancient lineage, and the possible antiquity of their megafaunal seed dispersal adaptations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ballardie RT, Whelan RJ (1986) Masting seed dispersal and seed predation in the cycad Macrozamia communis. Oecologia 70:100–105

    Article  Google Scholar 

  • Banack S, Cox P (2003) Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurol 61:387–389

    Article  CAS  Google Scholar 

  • Barnea A, Harborne JB, Pannell C (1993) What parts of fleshy fruits contain secondary compounds toxic to birds and why? Biochem Syst Ecol 21:421–429

    Article  CAS  Google Scholar 

  • Beck W (1992) Aboriginal preparation of Cycas seeds in Australia. Econ Bot 46:133–147

    Article  Google Scholar 

  • Bradford MG, Westcott DA (2010) Consequences of southern cassowary (Casuarius casuarius L.) gut passage and deposition pattern on the germination of rainforest seeds. Aust Ecol 35:325–333

    Article  Google Scholar 

  • Burbidge AH, Whelan RJ (1982) Seed dispersal in a cycad Macrozamia riedlei. Aust J Ecol 7:63–67

    Article  Google Scholar 

  • Butler RJ, Barrett PM, Kenrick P, Penn MG (2009) Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads. Biol Rev 84:73–89

    Article  PubMed  Google Scholar 

  • Calvino-Cancela M, Dunn RR, Van Etten EJB, Lamont BB (2006) Emus as non-standard seed dispersers and their potential for long-distance dispersal. Ecography 29:632–640

    Article  Google Scholar 

  • Carter T (1923) Birds of the Broome district. Emu 23:125–142

    Article  Google Scholar 

  • Charlton T, Marini A, Markey S, Norstog K, Duncan W (1992) Quantification of the Neurotoxin 2-Amino-3(Methylamino)- Propanoic Acid (BMAA) in Cycadales. Phytochemistry 31:3429–3432

    Article  CAS  Google Scholar 

  • Chemnick J (2007) Seed dispersal agents of two Mexican cycads. In: Vovides AP, Stevenson D, Osborne R (eds) Proceedings of cycad 2005 the 7th international conference on cycad biology. New York Botanical Garden Press, New York

    Google Scholar 

  • Cox P, Sacks O (2002) Cycad neurotoxins consumption of flying foxes and ALS-PDC disease in Guam. Neurol 58:956–959

    Article  Google Scholar 

  • Crowley BE, Godfrey LR, Irwin MT (2011) A glance to the past: subfossils, stable isotopes, seed dispersal and lemur species loss in southern Madagascar. Am J Primatol 73:25–37

    Article  PubMed  Google Scholar 

  • De Luca P, Moretti A, Sabato S, Gigliano GS (1980) The ubiquity of cycasin in cycads. Phytochemistry 19:2230–2231

    Article  Google Scholar 

  • Donatti CI, Galetti M, Pizo MA, Guimaraes PRJ, Jordano P (2007) Living in the land of ghosts: fruit traits and the importance of large mammals as seed dispersers in the Pantanal, Brazil. In: Dennis AJ, Green RJ, Schupp EW, Westcott DA (eds) Seed dispersal: theory and its application in a changing world. CAB International, Wallingford, pp 104–123

    Google Scholar 

  • Farrera MAP, Vovides AP (2004) Spatial distribution, population structure, and fecundity of Ceratozamia matuddi lundell (Zamiaceae) in El triunfo Biosphere Reserve, Chiapas. Mex Bot Rev 70:299–311

    Article  Google Scholar 

  • Fragoso JM (1997) Tapir-generated seed shadows: scale-dependent patchiness in the Amazon rain forest. J Ecol 85:519–529

    Article  Google Scholar 

  • Fragoso JM, Silvius KM, Correa JA (2003) Long-distance seed dispersal by tapirs increases seed survival and aggregates tropical trees. Ecol 84:1998–2006

    Article  Google Scholar 

  • Gilardi JD, Toft CA (2012) Parrots eat nutritious foods despite toxins. PLoS ONE. doi:10.1371/journal.pone.0038293

    Google Scholar 

  • Guimaraes PR, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE. doi:10.1371/journal.pone.0001745

    Google Scholar 

  • Hall JA, Walter GH (2013) Seed dispersal of the Australian cycad Macrozamia miquelii (Zamiaceae): are cycads megafauna-dispersed “grove forming” plants? Am J Bot 100:1127–1136

    Article  PubMed  Google Scholar 

  • Hallwachs W (1986) Agoutis (Dasyprocta punctata): inheritors of guapinol (Hymenaea courbaril: Leguminosae). In: Estrada A, Fleming TH (eds) Frugivores and seed dispersal. Junk Publishers, Dordrecht, pp 285–304

    Chapter  Google Scholar 

  • Herrera CM (2002) Seed dispersal by vertebrates. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell Science, Oxford

    Google Scholar 

  • Hill KD, Chase MW, Stevenson DW, Hills HG, Schutzman B (2003) The families and genera of cycads: a molecular phylogenetic analysis of cycadophyta based on nuclear and plastid DNA sequences. Int J Plant Sci 164:933–948

    Article  CAS  Google Scholar 

  • Janzen DH, Martin PS (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science 215:19–27

    Article  CAS  PubMed  Google Scholar 

  • Johnson CN (2009) Ecological consequences of late quaternary extinctions of megafauna. Proc R Soc Ser B 276:2509–2519

    Article  CAS  Google Scholar 

  • Jones DL (2002) Cycads of the world. Reed New Holland Books, Sydney

    Google Scholar 

  • Marler TE, Shaw CA (2009) Distribution of free and glycosylated sterols within Cycas micronesica plants. Sci Hortic 123:537–542

    Article  Google Scholar 

  • Marler TE, Lee V, Shaw CA (2005) Spatial variation of steryl glucosides in Cycas micronesica plants: within- and among-plant sampling procedures. Hortscience 40:1607–1611

    CAS  Google Scholar 

  • Miller CN (1977) Mesozoic conifers. Bot Rev 43:217–280

    Article  Google Scholar 

  • Miller GH, Magee JW, Johnson BJ, Fogel ML, Spooner A, McCulloch T, Ayliffe LK (1999) Pleistocene extinction of Genyornis newtoni: human impact on Australian megafauna. Science 283:205–208

    Article  CAS  PubMed  Google Scholar 

  • Molyneux RJ, Lee ST, Gardner DR, Panter KE, James LF (2007) Phytochemicals: the good the bad and the ugly? Phytochemistry 68:2973–2985

    Article  CAS  PubMed  Google Scholar 

  • Moretti A, Sabato S, Gigliano S (1981) Distribution of macrozamin in Australasian cycads. Phytochemistry 20:1415–1416

    Article  CAS  Google Scholar 

  • Moretti A, Sabato S, Gigliano S (1983) Taxonomic significance of methylazoxymethanol glycosides in the cycads. Phytochemistry 22:115–117

    Article  CAS  Google Scholar 

  • Murray PF, Vickers-Rich P (2004) Magnificent mihirungs: the colossal flightless birds of the Australian dreamtime. Indiana University Press, Indiana

    Google Scholar 

  • Nair JJ, van Staden J (2012) Isolation and quantification of the toxic methylazoxymethanol glycoside macrozamin in selected South African cycad species. S Afr J Bot 82:796–799

    Article  Google Scholar 

  • Norman D (2000) Feeding adaptations in the Dinosauria. In: Paul GS (ed) The Scientific American book of dinosaurs. St Martin’s Griffen Books, New York

    Google Scholar 

  • Norstog KJ, Nicholls TJ (1997) The biology of the cycads. Cornell University Press, Ithaca

    Google Scholar 

  • Perez-Farrera MA, Vovides AP, Octavio-Aguilar P, Gonzalez-Astorga J, de la Cruz-Rodriguez J, Hernandez-Jonapa R, Villalobos-Mandez SM (2006) Demography of the cycad Ceratozamia mirandae (Zamiaceae) under disturbed and undisturbed conditions in a biosphere reserve of Mexico. Plant Ecol 187:97–108

    Article  Google Scholar 

  • Price GJ (2008) Taxonomy and palaeobiology of the largest-ever marsupial Diprotodon Owen 1838 (Diprotodontidae Marsupialia). Zool J Linnean Soc 153:369–397

    Article  Google Scholar 

  • Roberts RG, Flannery TF, Ayliffe LK, Yoshida H, Olley JM, Prideeaux GJ, Laslett GM, Baynes A, Smith MA, Jones R, Smith BL (2001) New ages for the last Australian megafauna: continent-wide extinction about 46000 years ago. Science 292:1888–1892

    Article  CAS  PubMed  Google Scholar 

  • Sargent OH (1928) Reactions between birds and plants. Emu 27:185–192

    Article  Google Scholar 

  • Saul R, Chambers JP, Molyneux RJ, Elbein AD (1983) Castanospermine: a tetrahydroxylated alkaloid that inhibits β-glucosidase and β-glucocerebrosidase. Arch Biochem Biophys 221:593–597

    Article  CAS  PubMed  Google Scholar 

  • Seawright A, Ng JC, Oelrichs PB, Sani Y, Nolan CC, Lister AT, Holton J, Ray DE, Osborne R (1999) Recent toxicity studies in animals using chemical derived from cycads. In: Chen CJ (ed) Proceedings of the fourth international conference on cycad biology. International Academic Publishers, Beijing

    Google Scholar 

  • Snow EL, Walter GH (2007) Large seeds extinct vectors and contemporary ecology: testing dispersal in a locally distributed cycad Macrozamia lucida (Zamiaceae). Aust J Bot 55:592–600

    Article  Google Scholar 

  • Spencer P, Nunn P, Hugon J, Ludolph A, Ross S, Dwijendra R, Robertson R (1987) Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237:517–522

    Article  CAS  PubMed  Google Scholar 

  • Stevenson D (1990) Morphology and systematics of the Cycadales. Mem New York Bot Gard 57:8–55

    Google Scholar 

  • Tang W (1989) Seed dispersal in the cycad Zamia pumila in Florida. Can J Bot 67:2066–2070

    Article  Google Scholar 

  • Terry I, Forster PI, Moore CJ, Roemer RB, Machin PJ (2008) Demographics pollination syndrome and conservation status of Macrozamia platyrhachis (Zamiaceae) a geographically restricted Queensland cycad. Aust J Bot 56:321–332

    Article  Google Scholar 

  • Thieret JW (1958) Economic botany of the cycads. Econ Bot 67:2066–2070

    Google Scholar 

  • Van Der Pijl L (1982) Principles of dispersal in higher plants. Springer, New York

    Book  Google Scholar 

  • Vidakovic M (1991) Conifers: morphology and variation. Graficki Zavod Hrvatske, Zagreb

    Google Scholar 

  • Vovides AP (1990) Spatial distribution, survival and fecundity of Dioon edule (Zamiaceae) in a tropical deciduous forest in Veracruz, Mexico, with notes on its habitat. Am J Bot 77:1532–1543

    Article  Google Scholar 

  • Vovides AP, Norstog KJ, Duncan MW, Nash RJ, Molsen DV (1993) Histological changes during maturation in male and female cones of the cycad Zamia furfuracea and their significance in relation to pollination biology. Bot J Linn Soc 111:241–252

    Article  Google Scholar 

  • White HL (1913) Notes on the cassowary (Casuarius australis Wall). Emu 12:172–181

    Article  Google Scholar 

  • Whiting MG (1963) Toxicity of cycads. Econ Bot 17:271–302

    Article  CAS  Google Scholar 

  • Williams PA, Karl BJ (1996) Fleshy fruits of indigenous and adventive plants in the diet of birds in forest remnants, Nelson, New Zealand. N.Z. J Ecol 20:127–145

    Google Scholar 

  • Willson MF, Sabag C, Figueroa J, Armesto JJ (1996) Frugivory and seed dispersal of Podocarpus nubigena in Chiloe Chile. Rev Chil Hist Nat 69:343–349

    Google Scholar 

  • Wirminghaus JO, Downs CT, Symes CT, Perrin MR (2001) Fruiting in two afromontane forests in KwaZulu-Natal South Africa: the habitat type of the endangered Cape parrot Poicephalus robustus. S Afr J Bot 67:325–332

    Google Scholar 

  • Yagi F (2004) Azoxyglycoside content and b-glycosidase activities in leaves of various cycads. Phytochemistry 65:3243–3247

    Article  CAS  PubMed  Google Scholar 

  • Zaya DN, Howe HF (2009) The anomalous Kentucky coffeetree: megafaunal fruit sinking to extinction? Oecologia 161:221–226

    Article  PubMed  Google Scholar 

  • Zhifeng Z, Thomas BA (1989) A review of fossil cycad megasporophylls with new evidence of Crossozamia pomel and its associated leaves from the lower Permian of Taiyuan China. Rev Palaeobot Palynol 60:205–223

    Article  Google Scholar 

Download references

Acknowledgments

The GCMS method for the detection of cycasin was developed by Mr Grahame Kervan (UQ School of Land, Crop and Food Sciences). Our sincere thanks to him, as well as Dr Leslie Force and Dr Jennifer Waanders (UQ School of Land, Crop and Food Sciences) and Dr Susanne Schmidt (UQ School of Biological Sciences) for their assistance in the implementation of this GC/MS technique, and the interpretation of the results. We also thank Dr Chris Moore for suggesting some improvements to the draft and and giving us the benefit of considerable expertise in analytical chemistry. This study would not have been possible without the kind support Dr Glen Kisby (Oregon Health and Science University) in generously providing a pure standard of the toxic compound cycasin. We thank Dr James Gilardi (World Parrot Trust) for help in interpreting his published data (Gilardi and Toft 2012) on the toxicity of seeds and fruits in the diet of Amazonian parrots. The collection of wild cycad seed discussed in this paper was undertaken in conjunction with the Queensland Government Department of Environment and Resource Management scientific purposes permit number WITK06373009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Hall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, J.A., Walter, G.H. Relative Seed and Fruit Toxicity of the Australian Cycads Macrozamia miquelii and Cycas ophiolitica: Further Evidence for a Megafaunal Seed Dispersal Syndrome in Cycads, and Its Possible Antiquity. J Chem Ecol 40, 860–868 (2014). https://doi.org/10.1007/s10886-014-0490-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0490-5

Keywords

Navigation