Skip to main content
Log in

Chemical Defenses (Glucosinolates) of Native and Invasive Populations of the Range Expanding Invasive Plant Rorippa austriaca

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 12 October 2016

Abstract

Due to global warming, species are expanding their range to higher latitudes. Some range expanding plants have become invasive in their new range. The Evolution of Increased Competitive Ability (EICA) hypothesis and the Shifting Defense Hypothesis (SDH) predict altered selection on plant defenses in the introduced range of invasive plants due to changes in herbivore pressures and communities. Here, we investigated chemical defenses (glucosinolates) of five native and seven invasive populations of the Eurasian invasive range expanding plant, Rorippa austriaca. Further, we studied feeding preferences of a generalist and a specialist herbivore among the populations. We detected eight glucosinolates in the leaves of R. austriaca. 8-Methylsulfinyloctyl glucosinolate was the most abundant glucosinolate in all plants. There were no overall differences between native and invasive plants in concentrations of glucosinolates. However, concentrations among populations within each range differed significantly. Feeding preference between the populations by a generalist herbivore was negatively correlated with glucosinolate concentrations. Feeding by a specialist did not differ between the populations and was not correlated with glucosinolates. Possibly, local differences in herbivore communities within each range may explain the differences in concentrations of glucosinolates among populations. Little support for the predictions of the EICA hypothesis or the SDH was found for the glucosinolate defenses of the studied native and invasive R. austriaca populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agerbirk N, Petersen BL, Olsen CE, Halkier BA, Nielsen JK (2001) 1,4-Dimethoxyglucobrassicin in Barbarea and 4-hydroxyglucobrassicin in Arabidopsis and Brassica. J Agric Food Chem 49:1502–1507

    Article  CAS  PubMed  Google Scholar 

  • Bleeker W (2003) Hybridization and Rorippa austriaca (Brassicaceae) invasion in Germany. Mol Ecol 12:1831–1841

    Article  CAS  PubMed  Google Scholar 

  • Blossey B, Nötzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants - a hypothesis. J Ecol 83:887–889

    Article  Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97:194–208

    Article  CAS  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    Article  CAS  PubMed  Google Scholar 

  • Buschmann H, Edwards PJ, Dietz H (2005) Variation in growth pattern and response to slug damage among native and invasive provenances of four perennial Brassicaceae species. J Ecol 93:322–334

    Article  Google Scholar 

  • Cano L, Escarre J, Vrieling K, Sans FX (2009) Palatability to a generalist herbivore, defence and growth of invasive and native Senecio species: testing the evolution of increased competitive ability hypothesis. Oecologia 159:95–106

    Article  CAS  PubMed  Google Scholar 

  • Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40

    Article  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Davis DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Cipollini D, Mbagwu J, Barto K, Hillstrom C, Enright S (2005) Expression of constitutive and inducible chemical defenses in native and invasive populations of Alliaria petiolata. J Chem Ecol 31:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Dietz H, Kohler A, Ullmann I (2002) Regeneration growth of the invasive clonal forb Rorippa austriaca (Brassicaceae) in relation to fertilization and interspecific competition. Plant Ecol 158:171–182

    Article  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol Lett 11:701–709

    Article  PubMed  Google Scholar 

  • Doorduin LJ, Vrieling K (2011) A review of the phytochemical support for the shifting defence hypothesis. Phytochem Rev 10:99–106

    Article  CAS  PubMed  Google Scholar 

  • Engelkes T, Morrien E, Verhoeven KJF, Bezemer TM, Biere A, Harvey JA, McIntyre LM, Tamis WLM, van der Putten WH (2008) Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456:946–948

    Article  CAS  PubMed  Google Scholar 

  • Engelkes T, Wouters B, Bezemer TM, Harvey JA, van der Putten WH (2012) Contrasting patterns of herbivore and predator pressure on invasive and native plants. Basic Appl Ecol 13:725–734

    Article  Google Scholar 

  • Felker-Quinn E, Schweitzer JA, Bailey JK (2013) Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecol Evol 3:739–751

    Article  PubMed  PubMed Central  Google Scholar 

  • Haeupler H, Schönfelder P (1989) Atlas der Farn-und Blütenpflanzen der Bundesrepublik Deutschland. Ulmer, Stuttgart

    Google Scholar 

  • Haribal M, Renwick JAA (2001) Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata. J Chem Ecol 27:1585–1594

    Article  CAS  PubMed  Google Scholar 

  • Harvey JA, van Dam NM, Raaijmakers CE, Bullock JM, Gols R (2011) Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea). Oecologia 166:421–431

    Article  PubMed  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Johansson AS (1951) The food plant preference of Pieris brassicae L. (Lepid. Pieridae). Norsk Ent Tidsskr 8:187–195

    Google Scholar 

  • Joshi J, Vrieling K (2005) The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol Lett 8:704–714

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Kudrna O, Harpke A, Lux K, Pennestorfer J, Schweiger O, Settele J, Wiemers W (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz, Halle

    Google Scholar 

  • Lakeman-Fraser P, Ewers RM (2013) Enemy release promotes range expansion in a host plant. Oecologia 172:1203–1212

    Article  PubMed  Google Scholar 

  • Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175:176–184

    Article  PubMed  Google Scholar 

  • Lankau RA, Strauss SY (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317:1561–1563

    Article  CAS  PubMed  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277

    Article  Google Scholar 

  • Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PGL (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31:1493–1508

    Article  CAS  PubMed  Google Scholar 

  • Mauricio R, Rausher MD (1997) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51:1435–1444

    Article  Google Scholar 

  • Morrien E, Engelkes T, Macel M, Meisner A, Van der Putten WH (2010) Climate change and invasion by intracontinental range-expanding exotic plants: the role of biotic interactions. Ann Bot 105:843–848

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller C, Martens N (2005) Testing predictions of the ‘evolution of increased competitive ability’ hypothesis for an invasive crucifer. Evol Ecol 19:533–550

    Article  Google Scholar 

  • Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19:417–422

    Article  PubMed  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Popova TA (1993) A study of antibiotic effects of cabbage cultivars on the cabbage moth Mamestra brassicae L. (Lepidoptera, Noctuidae). Entomol Rev 72:125–132

    Google Scholar 

  • Renwick JA, Radke C, Sachdev-Gupta K, Städler E (1992) Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecology 3:33–38

    Article  CAS  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Salazar D, Marquis RJ (2012) Herbivore pressure increases toward the equator. Proc Natl Acad Sci U S A 109:12616–12620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Siemens DH, Mitchell-Olds T (1998) Evolution of pest-induced defenses in Brassica plants: tests of theory. Ecology 79:632–646

    Article  Google Scholar 

  • Strauss SY, Webb CO, Salamin N (2006) Exotic taxa less related to native species are more invasive. Proc Natl Acad Sci U S A 103:5841–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Textor S, Gershenzon J (2009) Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Rev 8:149–170

    Article  CAS  Google Scholar 

  • Van der Meijden E (1996) Plant defence, an evolutionary dilemma: contrasting effects of (specialist and generalist) herbivores and natural enemies. Entomol Exp Appl 80:307–310

    Article  Google Scholar 

  • Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil Trans R Soc B 365:2025–2034

    Article  PubMed  PubMed Central  Google Scholar 

  • van Leur H, Vet LEM, Van der Putten WH, van Dam NM (2008) Barbarea vulgaris glucosinolate phenotypes differentially affect performance and preference of two different species of lepidopteran herbivores. J Chem Ecol 34:121–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenson J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci U S A 101:4859–4864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf VC, Berger U, Gassmann A, Müller C (2011) High chemical diversity of a plant species i accompanied by increased chemical defence in invaisve populations. Biol Invasions 13:2091–2102

    Article  Google Scholar 

  • Wolfe LM, Elzinga JA, Biere A (2004) Increased susceptibility to enemies following introduction in the invasive plant Silene latifolia. Ecol Lett 7:813–820

    Article  Google Scholar 

  • Zangerl AR, Berenbaum MR (2005) Increase in toxicity of an invasive weed after reassociation with its coevolved herbivore. Proc Natl Acad Sci U S A 102:15529–15532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou JW, Rogers WE, Siemann E (2008) Increased competitive ability and herbivory tolerance in the invasive plant Sapium sebiferum. Biol Invasions 10:291–302

    Article  Google Scholar 

  • Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA (2012) Natural enemies drive geographic variation in plant defenses. Science 338:116–119

    Google Scholar 

Download references

Acknowledgments

We thank the Center for Plant Molecular Biology (ZMBP) of the University of Tübingen for the use of their greenhouse and laboratory facilities. Zuzana Münzbergova kindly provided the Czech plant material. We thank Karin Djendouci, Bielefeld University, for assistance with the glucosinolate extraction and two anonymous referees for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirka Macel.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10886-016-0773-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huberty, M., Tielbörger, K., Harvey, J.A. et al. Chemical Defenses (Glucosinolates) of Native and Invasive Populations of the Range Expanding Invasive Plant Rorippa austriaca . J Chem Ecol 40, 363–370 (2014). https://doi.org/10.1007/s10886-014-0425-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0425-1

Keywords

Navigation