Skip to main content
Log in

Costs of Jasmonic Acid Induced Defense in Aboveground and Belowground Parts of Corn (Zea mays L.)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal, A. A., Tuzun, S., and Bent, E. 1999. Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology, and Agriculture. 403p. Minnesota, American Phytopathological Society.

  • Agrawal, A. A. 2000. Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology 81:1804–1813.

    Google Scholar 

  • Baldwin, I. T., Schmelz, E. A., and Ohnmeiss, T. E. 1994. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. J. Chem. Ecol. 20:2139–2157.

    Article  CAS  Google Scholar 

  • Baldwin, I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. USA 95:8113–8118.

    Article  PubMed  CAS  Google Scholar 

  • Barbosa, M. A. G., Laranjeira, D., and Coelho, R. S. B. 2008. Physiological cost of induced resistance in cotton plants at different nitrogen levels. Summa Phytopathol. 34:338–342.

    Article  Google Scholar 

  • Bezemer, T. M. and van Dam, N. M. 2005. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20:617–624.

    Article  PubMed  Google Scholar 

  • Bezemer, T. M., Wagenaar, R., van Dam, N. M., and Wäckers, F. L. 2003. Interactions between the above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101:555–562.

    Article  Google Scholar 

  • Bodenhausen, N. and Reymond, P. 2007. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol. Plant-Microbe Interact. 20:1406–1420.

    Article  PubMed  CAS  Google Scholar 

  • Boughton, A. J., Hoover, K., and Felton, G. W. 2006. Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomol. Exp. Appl. 120:175–188.

    Article  CAS  Google Scholar 

  • Bower, N. I., Casu, R. E., Maclean, D. J., Reverter, A., Chapman, S. C., and Manners, J. M. 2005. Transcriptional response of sugarcane roots to methyl jasmonate. Plant Sci. 168:761–772.

    Article  CAS  Google Scholar 

  • Butrón, A., Chen, Y. C., Rottinghaus, G. E., and McMullen, M. D. 2010. Genetic variation at bx1 controls DIMBOA content in maize. Theor. Appl. Genet. 120:721–734.

    Article  PubMed  Google Scholar 

  • Cipollini, D. F. and Sipe, M. L. 2001. Jasmonic acid treatment and mammalian herbivory differentially affect chemical defenses and growth of wild mustard (Brassica kaber). Chemoecology 11:137–143.

    Article  CAS  Google Scholar 

  • Cipollini, D. 2002. Does competition magnify the fitness costs of induced resistance in Arabidopsis thaliana? A manipulative approach. Oecologia 131:514–520.

    Article  Google Scholar 

  • Classen, D., Arnason, J. T., Serratos, J. A., Lambert, J. D. H., Nozzolillo, C., and Philogéne, B. J. R. 1990. Correlation of phenolic acid content of maize to resistance to Sitophilus zeamais, the maize weevil, in CIMMYT'S collections. J. Chem. Ecol. 16:301–315.

    Article  CAS  Google Scholar 

  • Coley, P. D., Bryant, J. P., and Chapin, F. S. I. I. I. 1985. Resource availability and plant antiherbivore defense. Science 230:895–899.

    Article  PubMed  CAS  Google Scholar 

  • Dammann, C., Rojo, E., and Sanchez-Serrano, J. J. 1997. Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. Plant J. 11:773–782.

    Article  PubMed  CAS  Google Scholar 

  • Erb, M., Flors, V., Karlen, D., De Lange, E., Planchamp, C., D’Alessandro, M., Turlings, T. C. J., and Ton, J. 2009a. Signal signature of aboveground induced resistance upon belowground herbivory in maize. Plant J. 59:292–302.

    Article  PubMed  CAS  Google Scholar 

  • Erb, M., Gordon-Weeks, R., Flors, V., Camañes, G., Turlings, T. C. J., and Ton, J. 2009b. Belowground ABA boosts aboveground production of DIMBOA and primes induction of chlorogenic acid in maize. Plant Signal. Behav. 4:636–638.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y. J., Wang, J. W., Luo, S. M., Jin, Q., Fan, H. Z., Su, Y. J., and Liu, Y. H. 2010. Effects of exogenous application of jasmonic acid and salicylic acid on the leaf and root induction of chemical defence in maize (Zea mays L.). Allelopathy J. 25:133–146.

    Google Scholar 

  • Heijari, J., Nerg, A. M., Kainulainen, P., Viiri, H., Vuorinen, M., and Holopainen, J. K. 2005. Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in Scots pine seedlings. Entomol. Exp. Appl. 115:117–124.

    Article  CAS  Google Scholar 

  • Heil, M., Hilpert, A., Kaiser, W., and Linsenmair, K. E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88:645–654.

    Article  CAS  Google Scholar 

  • Heil, M. 2002. Ecological costs of induced resistance. Curr. Opin. Plant Biol. 5:345–350.

    Article  PubMed  Google Scholar 

  • Heil, M. 2008. Indirect defence via tritrophic interactions. New Phytol. 178:41–61.

    Article  PubMed  CAS  Google Scholar 

  • Heil, M. 2011. Plant-mediated interactions between above- and below-ground communities at multiple trophic levels. J. Ecol. 99:3–6.

    Article  Google Scholar 

  • Kaplan, I., Halitschke, R., Kessler, A., Sardanelli, S., and Denno, R. F. 2008. Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89:392–406.

    Article  PubMed  Google Scholar 

  • Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. pp. 1–11. Chicago, University of Chicago.

  • Ludwig-Müller, J., Schubert, B., Pieper, K., Ihmig, S., and Hilgenberg, W. 1997. Glucosinolate content in susceptible and resistant chinese cabbage varieties during development of clubroot disease. Phytochemistry 44:407–417.

    Article  Google Scholar 

  • McConn, M., Creelman, R. A., Bell, E., Mullet, J. E., and Browse, J. 1997. Jasmonate is essential for insect defense Arabidopsis. Proc. Natl. Acad. Sci. USA 94:5473–5477.

    Article  PubMed  CAS  Google Scholar 

  • Ni, X. and Quisenberry, S. S. 2000. Comparison of DIMBOA concentrations among wheat isolines and corresponding plant introduction lines. Entomol. Exp. Appl. 96:275–279.

    Article  CAS  Google Scholar 

  • Nuessly, G. S., Scully, B. T., Hentz, M. G., Beiriger, R., Snook, M. E., and Widstrom, N. W. 2007. Resistance to Spodoptera frugiperda (Lepidoptera: noctuidae) and Euxesta stigmatias (Diptera: ulidiidae) in sweet corn derived from exogenous and endogenous genetic systems. J. Econ. Entomol. 100:1887–1895.

    Article  PubMed  CAS  Google Scholar 

  • Purrington, C. B. 2000. Costs of resistance. Curr. Opin. Plant Biol. 3:305–308.

    Article  PubMed  CAS  Google Scholar 

  • Randhir, R. and Shetty, K. 2005. Developmental stimulation of total phenolics and related antioxidant activity in light- and dark-germinated maize by natural elicitors. Process Biochem. 40:1721–1732.

    Article  CAS  Google Scholar 

  • Rasmann, S. and Agrawal, A. A. 2008. In defense of roots: a research agenda for studying plant resistance to belowground herbivory. Plant Physiol. 146:875–880.

    Article  PubMed  CAS  Google Scholar 

  • Rasmann, S., Köllner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737.

    Article  PubMed  CAS  Google Scholar 

  • Rasmann, S. and Turlings, T. C. J. 2008. First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369.

    Article  Google Scholar 

  • Redman, A. M., Cipollini, D. F., and Schultz, J. C. 2001. Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum. Oecologia 126:380–385.

    Article  Google Scholar 

  • Rojo, E., Solano, R., and Sanchez-Serrano, J. J. 2003. Interactions between signaling compounds involved in plant defense. J. Plant Growth Regul. 22:82–98.

    Article  CAS  Google Scholar 

  • Rostas, M. 2007. The effects of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one on two species of Spodoptera and the growth of Setosphaeria turcica in vitro. J. Pest Sci. 80:35–41.

    Article  Google Scholar 

  • Schmidt, L., Hummel, G. M., Schöttner, M., Schurr, U., and Walter, A. 2010. Jasmonic acid does not mediate root growth responses to wounding in Arabidopsis thaliana. Plant Cell Environ. 33:104–116.

    PubMed  CAS  Google Scholar 

  • Sicker, D., Frey, M., Schulz, M., and Gierl, A. 2000. Role of natural benzoxazinones in the survival strategy of plants. Int. Rev. Cytol. 198:319–346.

    Article  PubMed  CAS  Google Scholar 

  • Soler, R., Van der Putten, W. H., Harvey, J., Vet, L. E. M., Dicke, M., and Bezemer, T. M. 2012. Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. J. Chem. Ecol. 2012. doi:10.1007/s10886-012-0104-z.

  • Steppuhn, A. and Baldwin, I. T. 2008. Induced defenses and the cost-benefit paradigm, pp. 61–83, in A. Schaller (ed.), Induced Plant Resistance to Herbivory. Springer Science Business Media BV, Stuttgart.

    Chapter  Google Scholar 

  • Strauss, S. Y., Rudgers, J., Lau, J. A., and Irwin, R. E. 2002. Direct and ecological costs of resistance to herbivory. Trends Ecol. Evol. 17:278–285.

    Article  Google Scholar 

  • Thaler, J. S. 1999. Induced resistance in agricultural crops: effects of jasmonic acid on herbivory and yield in tomato plants. Environ. Entomol. 28:30–37.

    CAS  Google Scholar 

  • van Dam, N. M., Harvey, J. A., Wäckers, F. L., Bezemer, M. T., van der Putten, W. H., and Vet, L. E. M. 2003. Interactions between aboveground and belowground induced responses against phytophages. Basic Appl. Ecol. 4:63–77.

    Article  Google Scholar 

  • van Dam, N. M. and Baldwin, I. T. 2001. Competition mediates costs of jasmonate-induced defences, nitrogen acquisition and transgenerational plasticity in Nicotiana attenuata. Funct. Ecol. 15:406–415.

    Article  Google Scholar 

  • van Dam, N. M. and Heil, M. 2011. Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99:77–88.

    Article  Google Scholar 

  • van Dam, N. M., Horn, M., Mareš, M., and Baldwin, I. T. 2001. Ontogeny constrains the systemic proteinase inhibitor response in Nicotiana attenuata. J. Chem. Ecol. 27:547–568.

    Article  PubMed  Google Scholar 

  • van Dam, N. M., Witjes, L., and Svatoš, A. 2004. Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytol. 161:801–810.

    Article  Google Scholar 

  • Wäckers, F. L. and Bezemer, T. M. 2003. Root herbivory induces an above-ground indirect defence. Ecol. Lett. 6:9–12.

    Article  Google Scholar 

  • Wang, J. W., Xu, T., Zhang, L. W., Zhong, Z. M., and Luo, S. M. 2007. Effects of methyl jasmonate on hydroxamic acid and phenolic acid content in maize and its allelopathic activity to Echinochloa crusgalli (L.). Allelopathy J. 19:161–170.

    Google Scholar 

  • Wasternack, C. 2005. Introductory remarks on biosynthesis and diversity in actions. J. Plant Growth Regul. 23:167–169.

    Google Scholar 

  • Xu, T., Wang, J. W., and Luo, S. M. 2005. Cloning of the key genes in maize oxylipins pathways and their roles in herbivore induced defense. Chin. Sci. Bull. 50:2457–2466.

    CAS  Google Scholar 

  • Zavala, J. A., Patankar, A. G., Gase, K., and Baldwin, I. T. 2004. Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. Proc. Natl. Acad. Sci. USA 101:1607–1612.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the College of Agriculture and Biotechnology in China for providing corn seeds. We also thank Professor Prasanta C. Bhowmik (Department of Plant, Soil & Insect Sciences, University of Massachusetts) and Professor Muhammad Bismillah Khann (College of Agriculture, Bahauddin Zakariya University, Multan, Pakistan) for revising the manuscript. This research was financially supported by the National 973 Project of China (2011CB100406), National Natural Science Foundation of China (31170506, 41101279), Research Fund for the Doctoral Program of Higher Education of China (20094404120010, 20104404110003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Wang, J., Luo, S. et al. Costs of Jasmonic Acid Induced Defense in Aboveground and Belowground Parts of Corn (Zea mays L.). J Chem Ecol 38, 984–991 (2012). https://doi.org/10.1007/s10886-012-0155-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0155-1

Keywords

Navigation