Skip to main content
Log in

Knockdown of Microplitis mediator Odorant Receptor Involved in the Sensitive Detection of Two Chemicals

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Odorant receptors are thought to play critical roles in the perception of chemosensory stimuli by insects. The primary method to address the functions of odorant receptors in insects is to use in vitro binding assays between the receptors and potential chemical stimuli. We injected MmedOrco dsRNA into the abdominal cavity of a braconid wasp, Microplitis mediator, and assayed for expression of this gene 72 h after treatment (RNAi). Quantitative real-time PCR demonstrated that the level of mRNA expression in MmedOrco dsRNA-treated M. mediator was significantly reduced (>90%) when compared with water-treated controls. Furthermore, electroantennogram (EAG) responses of M. mediator to two chemical attractants, nonanal and farnesene, were also reduced significantly (~70%) in RNAi-treated M. mediator when compared to controls. RNAi-treated M. mediator also responded by walking/flying at a lower rate to both chemicals when compared with controls in a Y-tube olfactometer bioassay, which provides direct evidence that MmedOrco plays an important role in perception of nonanal and farnesene in M. mediator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amdam, G. V., Simo, Z. L., Guidugli, K. R., Norberg, K., and Omholt, S. W. 2003. Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol. 3:1.

    Article  PubMed  Google Scholar 

  • Arthur, A. P. and Mason, P. G. 1986. Life history and immature stages of the parasitoid Microplitis mediator (Hymenoptera: Braconidae), reared on the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Can. Entomol. 118:487–491.

    Article  Google Scholar 

  • Benton, R., Saches, S., Michnick, S. W., and Vosshall, L. B. 2006. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PloS Biol. 4:240–257.

    Article  CAS  Google Scholar 

  • Bettencourt, R., Terenius, O., and Faye, I. 2002. Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Mol. Biol. 11:267–271.

    Article  PubMed  CAS  Google Scholar 

  • Boisson, B., Jacques, J. C., Choumet, V., Mattin, E., Xu, J., Vernick, K., and Bourgouin, C. 2006. Gene silencing in mosquito salivary glands by RNAi. FEBS Lett. 580:1988–1992.

    Article  PubMed  CAS  Google Scholar 

  • Bucher, G., Scholten, J., and Klingler, M. 2002. Parental RNAi in Tribolium (Coleoptera). Curr. Biol. 12:R85–R86.

    Article  PubMed  CAS  Google Scholar 

  • Carthew, R. W. 2001. Gene silencing by double-stranded RNA. Curr. Opin. Cell Biol. 13:244–248.

    Article  PubMed  CAS  Google Scholar 

  • Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., and Kim, J. 1999. A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron 22:327–338.

    Article  PubMed  CAS  Google Scholar 

  • Dykxhoorn, D. M., Novina, C. D., and Sharp, P. A. 2003. Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Bio. 4:457–467.

    Article  CAS  Google Scholar 

  • Eleftherianos, I., Marokhzal, J., Millichap, P. J., Hodgkinson, A. J., Sriboonlert, A., and Reynolds, S. E. 2006. Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photo-rhabdus luminescens: roles of immune-related proteins shown by RNA interference. Insect Biochem. Mol. Biol. 36:517–525.

    Article  PubMed  CAS  Google Scholar 

  • Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811.

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse, H. S., Gatehouse, L. N., Malone, L. A., Hodges, S., Tregida, E., and Todd, J. 2004. Amylase activity in honey bee hypopharyngeal glands reduced by RNA interference. J. Apicult. Res. 43:9–13.

    CAS  Google Scholar 

  • Ghanim, M., Kontsedalov, S., and Czosnek, H. 2007. Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem. Mol. Biol. 37:732–738.

    Article  PubMed  CAS  Google Scholar 

  • Jones, W. D., Nguyen, T. A., Kloss, B., Lee, K. J., and Vosshall, L. B. 2005. Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol. 15:R119–R121.

    Article  PubMed  CAS  Google Scholar 

  • Kennerdell, J. R. and Carthew, R. W. 1998. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026.

    Article  PubMed  CAS  Google Scholar 

  • Krieger, J., Grobe-Wilde, E., Gohl, T., and Breer, H. 2005. Candidate pheromone receptors of the silkmoth Bombyx mori. Eur. J. of Neurosci. 21:2167–2176.

    Article  PubMed  Google Scholar 

  • Krieger, J., Klink, O., Mohl, C., Raming, K., and Breer, H. 2003. A candidate olfactory receptor subtype highly conserved across different insect orders. J. Comp. Physiol. 189:519–526.

    Article  CAS  Google Scholar 

  • Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., and Amrein, H. 2004. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S. -H., Ding, Z. -P., Zhang, C. -W., Yang, B. -J., and Liu, Z. -W. 2010. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Mol. Biol. 40:666–671.

    Article  CAS  Google Scholar 

  • Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT Method. Methods. 25:402–408.

    Article  PubMed  CAS  Google Scholar 

  • Maleszka, J., Fore, S., Saint, R., and Maleszka, R. 2007. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev. Genes Evol. 217:189–196.

    Article  PubMed  CAS  Google Scholar 

  • Meister, G. and Tuschl, T. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349.

    Article  PubMed  CAS  Google Scholar 

  • Melo, A. C. A., Rutzler, M., Pitts, R. J., and Zwiebel, L. J. 2004. Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. Chem. Senses 29:403–410.

    Article  PubMed  CAS  Google Scholar 

  • Misquitta, L. and Paterson, B. M. 1999. Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad. Sci. USA. 96:1451–1456.

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan, S., Montgomery, R. R., Deponte, K., Tschudi, C., Marcantonil, N., Anderson, J. F., Sauer, J.R., Cappello, M., Kantor, F. S., and Fikrig, E. 2004. Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proc. Natl. Acad. Sci. USA. 101:1141–1146.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, A. S. and Luetje, C. W. 2010. Transmembrane segment 3 of Drosophila melanogaster odorant receptor subunit 85b contributes to ligand-receptor interactions. J. Biol. Chem. 285: 11854–11862.

    Article  PubMed  CAS  Google Scholar 

  • Pitts, R. J., Fox, A. N., and Zwiebel, L. J. 2004. A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. USA. 101:5058–5063.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal, R., Sivakumar, S., Agrawal, N., Malhotra, P., and Bhatnagar, R. K. 2002. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J. Biol. Chem. 277:46849–46851.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K., Pellegrino, M., Nakagawa, T., Vosshall, L. B., and Touhara, K. 2008. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006.

    Article  PubMed  CAS  Google Scholar 

  • Shenefelt, R. D. 1973. Braconidae: Macrogasterinae and Ichneutinae, pp. 750–751, in V. V. Jones and R. D. Shenefelt (eds.). Hymenopterum Catalogus Nova Edito. W. Junk Press, Gravenhage, Holland.

    Google Scholar 

  • Smart, R., Kiely, A., Beale, M., Vargas, E., and Carraher, C. 2008. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem. Molec. 38:770–780.

    Article  CAS  Google Scholar 

  • Tomoyasu, Y. and Denell, R. E. 2004. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev. Genes Evol. 214:575–578.

    Article  PubMed  CAS  Google Scholar 

  • Turner, C. T., Davy, M. W., Macdiarmid, R. M., Plummer, K. M., Brich, N. P., and Newcomb, R. D. 2006. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol. 15:383–391.

    Article  PubMed  CAS  Google Scholar 

  • Vlachou, D., Schlegelmilch, T., Christophides, G. K., and Kafatos, F. C. 2005. Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion. Curr. Biol. 15:1185–1195.

    Article  PubMed  CAS  Google Scholar 

  • Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A., and Axel, R. 1999. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736.

    Article  PubMed  CAS  Google Scholar 

  • Vosshall, L. B., Wong, A. M., and Axel, R. 2000. An olfactory sensory map in the fly brain. Cell 102:147–159.

    Article  PubMed  CAS  Google Scholar 

  • Wicher, D., Schafer, R., Bauernfeind, R., Stensmyr, M. C., and Heller, R. 2008. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  • Yu, H. -L., Zhang, Y. -J., Kris, A. -G., Wu, K. -M., Gao, X. -W., and Guo, Y. -Y. 2010. Electrophysiological and behavioral responses of Microplitis mediator (Hymenoptera: Braconidae) to caterpillar-induced volatiles from cotton. Environ. Entomol. 39:600–609.

    Article  PubMed  Google Scholar 

  • Syed, Z., Kopp, A., Kimbrell, D. A., and Leal, W. S. 2010. Bombykol receptors in the silkworm moth and the fruit fly. Proc. Natl. Acad. Sci. USA. 107:9436–9439.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Zhang, Y. -J., Su, H. -H., Gao, X. -W., and Guo, Y. -Y. 2009. Gene cloning and tissue-specific expression of an olfactory receptor in Microplitis mediator (Hymenoptera: Braconidae). Scientia Agricultura Sinica 42:1639–1645 (in Chinese).

    CAS  Google Scholar 

  • Zhao, Y. -Y., Liu, F., Yang, G., and You, M. -S. 2010. PsOr1, a potential target for RNA interference-based pest management. Insect Mol. Biol. 20:97–104.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the China National “973” Basic Research Program (Grant No. 2012CB114104), the National Natural Science Foundation of China (Grant No. 30871640, 31171858), and the International Cooperation and Exchange Foundation of NSFC-RS (Grant No. 31111130203). We also thank Dr. Xiangbing Yang of Northwest A & F University for the review of an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, KM., Ren, LY., Zhang, YJ. et al. Knockdown of Microplitis mediator Odorant Receptor Involved in the Sensitive Detection of Two Chemicals. J Chem Ecol 38, 287–294 (2012). https://doi.org/10.1007/s10886-012-0085-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0085-y

Keywords

Navigation