Skip to main content

Advertisement

Log in

Molecular Characterization and Expression Pattern of Two General Odorant Binding Proteins from the Diamondback Moth, Plutella xylostella

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In the Lepidoptera, odorant signals are thought to be mediated by general odorant binding proteins (GOBPs) in the sensillar lymph surrounding the olfactory receptors. We describe the identification and characterization of two new cDNAs encoding GOBPs from the antennae of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), a species for which no GOBPs have been identified to date. We focused our investigation on this olfactory protein family by using reverse transcription–polymerase chain reaction strategies. The deduced amino acid sequences of PxylGOBP1 and PxylGOBP2 revealed open reading frames of 168 and 163 amino acids, respectively, with six cysteine residues in conserved positions relative to other known GOBPs. The alignment of the mature PxylGOBPs with other Lepidoptera GOBPs showed high sequence identity (70–80%) with other full-length sequences from GenBank. Sequence identity between PxylGOBP1and PxylGOBP2 was only 50%, suggesting that the two proteins belong to different classes of lepidopteran GOBPs. The expression patterns of the two PxylGOBP genes, with respect to tissue distribution and sex, were further investigated by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Although the two GOBP genes were expressed only in the antennae of both sexes, reflecting the antennal specificity of GOBPs, the transcription levels of these genes depended on the sex, the age, the mating status, and the genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ANTON, S., DUFOUR, M. -C., and GADENNE, C. 2007. Plasticity of olfactory-guided behaviour and its neurobiological basis: lessons from moths and locusts. Entomol. Exp. Appl.123:1–11.

    Article  Google Scholar 

  • BAN, L., SCALONI, A., DAMBROSIO, C., ZHANG, L., YAN, Y., and PELOSI, P. 2003. Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria. Cell. Mol. Life Sci. 60:390–400.

    Article  CAS  PubMed  Google Scholar 

  • CALVELLO, M., BRANDAZZA, A., NAVARRINI, A., DANI, F. R., TURILLAZZI, S., FELICIOLI, A., and PELOSI, P. 2005. Expression of odorant-binding proteins and chemosensory proteins in some Hymenoptera. Insect Biochem. Mol. Biol. 35:297–307.

    Article  CAS  PubMed  Google Scholar 

  • CORPET, F. 1988. Multiple sequence alignment with hierarchical clustering. Nuc. Acids Res. 16:10881–10890.

    Article  CAS  Google Scholar 

  • DANTY, E., BRIAND, L., MICHARD-VANHE, E. C., PEREZ, V., ARNOLD, G., GAUDEMER, O., HUET, D., HUET, J. C., OUALI, C., MASSON, C., and PERNOLLET, J. C. 1999. Cloning and expression of a queen pheromone-binding protein in the honeybee: An olfactory-specific, developmentally regulated protein. J. Neurosci. 19:7468–7475

    CAS  PubMed  Google Scholar 

  • DICKENS, J. C., CALLAHAN, F. E., WERGIN, W. P., MURPHY, C. A., and VOGT, R. G. 1998. Intergeneric distribution immunolocalization of a putative odorant-binding protein in true bugs (Hemiptera, Heteroptera). J. Exp. Biol. 201:33–41.

    CAS  PubMed  Google Scholar 

  • DU, G. and PRESTWICH, G. D. 1995. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochem. 34:8726–8732.

    Article  CAS  Google Scholar 

  • FAN, W. M., SHENG, C. F., and SU, J. W. 2003. Electrophysiological and behavioral responses of both sexes of the cotton bollworm, Helicoverpa armigera Hübner to sex pheromones. Acta Entomologica Sinica 46:138–143 (In Chinese).

    Google Scholar 

  • FEIXAS, J., PRESTWICH, G. D., and GUERRERO, A. 1995. Ligand specificity of pheromone-binding proteins of the processionary moth. Eur. J. Biochem. 234:521–526.

    Article  CAS  PubMed  Google Scholar 

  • FENG, L. and PRESTWICH, G. D. 1997. Expression and characterization of a Lepidoptera general odorant binding protein. Insect Biochem. Mol. Biol. 27:405–412.

    Article  CAS  PubMed  Google Scholar 

  • FORET S. and MALESZKA R. 2006. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res. 16:1404–1413.

    Article  CAS  PubMed  Google Scholar 

  • HEINBOCKEL, T. and KAISSLING, K. E. 1996. Variability of olfactory receptor neuron responses of female silkmoths (Bombyx mori L.) to benzoic acid and (±)-linalool. J. Insect Physiol. 42:565–578.

    Article  CAS  Google Scholar 

  • HONSON, N. S. and PLETTNER, E. 2006. Structure and reactivity of disulfide bridges in insect pheromone binding proteins. Naturwissenschaften 93:267–277.

    Article  CAS  PubMed  Google Scholar 

  • HONSON, N., JOHNSON, M. A., OLIVER, J.E., PRESTWICH, G. D., and PLETTNER, E. 2003. Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem. Senses 28:479–489.

    Article  CAS  Google Scholar 

  • ISHIDA, Y., CHIANG, V. P., HAVERTY, M. I., and LEAL, W. S. 2002a. Odorant-binding proteins from a primitive termite. J. Chem. Ecol. 28:1887–1893.

    Article  CAS  Google Scholar 

  • ISHIDA, Y., CORNEL, A. J., and LEAL, W. S. 2002b. Identification and cloning of a female antenna-specific odorant- binding protein in the mosquito Culex quinquefasciatus. J. Chem. Ecol. 28:867–871.

    Article  CAS  Google Scholar 

  • JACQUIN-JOLY E., BOHBOT J., FRANÇOIS M. C., CAIN A. H., and NAGNAN-LE MEILLOUR P. 2000. Characterization of the general odorant-binding protein 2 in the molecular coding of odorants in Mamestra brassicae. Eur. J. Biochem. 267:6708–6714.

    Article  CAS  PubMed  Google Scholar 

  • KLEIN, U. 1987. Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem. 17:1193–1204.

    Article  Google Scholar 

  • KOWCUN, A., HONSON, N., and PLETTNER, E. 2001. Olfaction in the gypsy moth, Lymantria dispar: effect of pH, ionic strength and reductants on pheromone transport by pheromone-binding proteins. J. Biol. Chem. 276:44770–44776.

    Article  CAS  PubMed  Google Scholar 

  • LAUE, M., STEINBRECHT, R.A., and ZIEGELBERGER, G. 1994. Immunocytochemical localization of general odorant-binding proteins in olfactory sensilla of the silkmoth, Antheraea polyphemus. Naturwissenschaften 81:178–181.

    CAS  Google Scholar 

  • LAUGHLIN, J. D., HA, T. S., JONES, D. N., and SMITH, D. P. 2008. Activation of pheromonesensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133:1255–1265.

    Article  CAS  PubMed  Google Scholar 

  • LEAL, W. S., NIKONOVA, L., and PENG, G. 1999. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett. 464:85–90.

    Article  CAS  PubMed  Google Scholar 

  • LJUNGBERG, H., ANDERSON, P., and HANSSON, B. S. 1993. Physiology and morphology of pheromone specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J. Insect Physiol. 39:253–260.

    Article  CAS  Google Scholar 

  • MAIDA, R., KRIEGER, J., GEBAUER, T., LANGE, U., and ZIEGELBERGER, G. 2000. Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi. Eur. J. Biochem. 267:2899–2908.

    Article  CAS  PubMed  Google Scholar 

  • MAÍBÈCHE-COISNÉ, M., LONGHI, S., JACQUIN-JOLY, E., BRUNEL, C., EGLOFF, M. P., GASTINEL, L., CAMBILLAU, C., TEGONI, M., and NAGNAN-LE MEILLOUR, P. 1998. Molecular cloning and bacterial expression of a general odorant-binding protein from the cabbage armyworm, Mamestra brassicae. Eur. J. Biochem. 258:768–774.

    Article  PubMed  Google Scholar 

  • MASANTE-ROCA, I., ANTON, S., DELBAC, L., DUFOUR, M. C., and GADENNE, C. 2007. Attraction of the grapevine moth to host and non-host plant parts in a wind tunnel: effects of plant phenology, sex, and mating status. Entomologia Experimentalis et Applicata 122: 239–245

    Article  Google Scholar 

  • MECHABER, W. L., CAPALDO, C. T., and HILDEBRAND, J. G. (2002) Behavioral responses of adult female tobacco hornworms, Manduca sexta, to hostplant volatiles change with age and mating status. J. Insect Sci. 2:1–8.

    Google Scholar 

  • NAGNAN-LE MEILLOUR, P., JACQUIN-JOLY, E., and FRANCOIS, M. C. 2004. Identification and molecular cloning of putative odorant-binding proteins from the American palm weevil, Rhyncophorus palmarum L. J. Chem. Ecol. 30:1213–1223.

    Article  CAS  PubMed  Google Scholar 

  • NIELSEN, H., ENGELBRECHT, J., BRUNAK, S., and VON HEIJNE, G. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10:1–6.

    Article  CAS  PubMed  Google Scholar 

  • PAESEN, G. C. and HAPP G. M. 1995. The B proteins secreted by the tubular accessory sex glands of the male mealworm beetle, Tenebrio molitor, have sequence similarities to moth pheromone-binding proteins. Insect Biochem. Mol. Biol. 25:401–408.

    Article  CAS  PubMed  Google Scholar 

  • PELOSI, P. 1998. Odorant-binding proteins: structural aspects. Ann. NY Acad. Sci. 855: 281–293.

    Article  CAS  PubMed  Google Scholar 

  • PELOSI, P., ZHOU, J. J., BAN, L. P., and CALVELLO, M. 2006. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 63:1658–1676.

    Article  CAS  PubMed  Google Scholar 

  • PESENTI, M. E., SPINELLI, S., BEZIRARD, V., BRIAND, L., PERNOLLET, J. C., TEGONI, M., and CAMBILLAU, C. 2008. Structural basis of the honey bee PBP pheromone and pH-induced conformational change. J. Mol. Biol. 380:158–169.

    Article  CAS  PubMed  Google Scholar 

  • PHELAN, P. L. and BAKER, T. C. 1987. An attracticide for control of Amyelois transitella (Lepidoptera: Pyralidae) in almonds. J. Econ. Entomol. 80:779–783.

    CAS  Google Scholar 

  • PICIMBON J. F. and GADENNE C. 2002. Evolution of noctuid pheromone binding proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem. Mol. Biol. 32:839–846.

    Article  CAS  PubMed  Google Scholar 

  • PIKIELNY, C. W., HASAN, G., ROUYER, F., and ROSBASH, M. 1994. Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12:35–49.

    Article  CAS  PubMed  Google Scholar 

  • PLETTNER, E., LAZAR, J., PRESTWICH, E. G., and PRESTWICH, G. D. 2000. Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 39:8953–8962.

    Article  CAS  PubMed  Google Scholar 

  • PRIESNER, E. 1979. Progress in the analysis of pheromone receptor systems. Ann. Zool. Ecol. Anim. 11:533–546.

    CAS  Google Scholar 

  • REDDY, G. V. P. and GUERRERO, A. 2000. Behavioural responses of diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp. capitata. J. Agric. Food Chem. 48:6025–6029.

    Article  CAS  PubMed  Google Scholar 

  • SCALONI, A., MONTI, M., ANGELI, S., and PELOSI, P. 1999. Structural analysis and disulfide bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem. Biophys. Res. Commun. 266:386–391.

    Article  CAS  PubMed  Google Scholar 

  • SCHNEIDER, D., SCHULZ, S., PRIESNER, E., ZIESMANN, J., and FRANCKE, W. 1998. Autodetection and chemistry of female and male pheromone in both sexes of the tiger moth Panaxia quadripunctaria. J. Comp. Physiol. 182:153–161.

    Article  CAS  Google Scholar 

  • STEINBRECHT, R. A. 1998. Odorant-binding proteins: expression and function. Ann. N. Y. Acad. Sci. 855:323–332.

    Article  CAS  PubMed  Google Scholar 

  • STEINBRECHT, R. A., OZAKI M., and ZIEGELBERGER, G. 1992. Immunocytochemical localization of pheromone-binding protein in moth antennae. Cell Tissue Res. 270:287–302.

    Article  CAS  Google Scholar 

  • VOGT, R. G. and RIDDIFORD, L.M. 1981. Pheromone binding and inactivation by moth antennae. Nature 293:161–163.

    Article  CAS  PubMed  Google Scholar 

  • VOGT, R. G., PRESTWICH, G. D., and LERNER, M. R. 1991. Odorant-binding protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J. Neurobiol. 22:74–84.

    Article  CAS  PubMed  Google Scholar 

  • VOGT, R. G., CALLAHAN, F. E., ROGERS, M. E., and DICKENS, J. C. 1999. Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, heteroptera). Chem. Senses 24:481–495.

    Article  CAS  PubMed  Google Scholar 

  • XU, P., ATKINSON, R., JONES, D. N., and SMITH, D. P. 2005. Drosophila OBP LUSH is required for activity of pheromone sensitive neurons. Neuron 45:193–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the National Natural Science Foundation of China (No. 30571505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Qun Wang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplemental Data Table 1

Relative quantification of expression of PxylGOBP1 and PxylGOBP2 at various times in the life cycle of Plutella xylostella (DOC 72 kb)

Supplemental Data Table 2

Relative quantification of expression of PxylGOBP1 and PxylGOBP2 amplified at various times by real-time PCR (DOC 71 kb)

Supplemental Data Fig. 1

The Rn vs Cycle of PxylGOBP1 real-time PCR. (DOC 138 kb)

Supplemental Data Fig. 2

The Standard Curve for PxylGOBP1 real-time PCR: K = 3.25, B = −28.63,R2 = 1. (DOC 95 kb)

Supplemental Data Fig. 3

The Rn vs Cycle of PxylGOBP2 real-time PCR. (DOC 132 kb)

Supplemental Data Fig. 4

The Standard Curve for PxylGOBP2 real-time PCR: K = −3.05, B = 27.89,R2 = 0.996. (DOC 95 kb)

Supplemental Data Fig. 5

The Rn vs Cycle of PxylActin real-time PCR. (DOC 143 kb)

Supplemental Data Fig. 6

The Standard Curve of PxylActin real-time PCR: K = −3.1, B = 31.94, R2 = 0.99. (DOC 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZC., Wang, MQ., Lu, YB. et al. Molecular Characterization and Expression Pattern of Two General Odorant Binding Proteins from the Diamondback Moth, Plutella xylostella . J Chem Ecol 35, 1188–1196 (2009). https://doi.org/10.1007/s10886-009-9697-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9697-2

Keywords

Navigation