Skip to main content
Log in

Disease Status and Population Origin Effects on Floral Scent: Potential Consequences for Oviposition and Fruit Predation in A Complex Interaction Between A Plant, Fungus, and Noctuid Moth

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In the Silene latifoliaHadena bicruris nursery pollination system, the Hadena moth is both pollinator and seed predator of its host plant. Floral scent, which differs among S. latifolia individuals and populations, is important for adult Hadena to locate its host. However, the success of moth larvae is strongly reduced if hosts are infected by the anther smut fungus Microbotryum violaceum, a pathogen that is transmitted by flower visitors. There were no qualitative differences between the scent of flowers from healthy and diseased plants. In addition, electroantennographic measurements showed that Hadena responded to the same subset of 19 compounds in samples collected from healthy and diseased plants. However, there were significant quantitative differences in scent profiles. Flowers from diseased plants emitted both a lower absolute amount of floral scent and had a different scent pattern, mainly due to their lower absolute amount of lilac aldehyde, whereas their amount of (E)-β-ocimene was similar to that in healthy flowers. Dual choice behavioral wind tunnel tests using differently scented flowers confirmed that moths respond to both qualitative and quantitative aspects of floral scent, suggesting that they could use differences in floral scent between healthy and infected plants to discriminate against diseased plants. Population mean fruit predation rates significantly increased with population mean levels of the emission rates of lilac aldehyde per flower, indicating that selection on floral scent compounds may not only be driven by effects on pollinator attraction but also by effects on fruit predation. However, variation in mean emission rates of scent compounds per flower generally could not explain the higher fruit predation in populations originating from the introduced North American range compared to populations native to Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, R. P. 1995. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Allured, Carol Stream, IL.

    Google Scholar 

  • Amirav, A., and Dagan, S. 1997. A direct sample introduction device for mass spectrometry studies and gas chromatography mass spectrometry analyses. Eur. Mass Spectrom 3:105–111.

    Article  CAS  Google Scholar 

  • Awmack, C. S., and Leather, S. R. 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol 82:162–165.

    Google Scholar 

  • Biere, A., Elzinga, J. A., Honders, S. C., and Harvey, J. A. 2002. A plant pathogen reduces the enemy-free space of an insect herbivore on a shared host plant. Proc. R. Soc. Lond. Ser. B 269:2197–2204.

    Article  Google Scholar 

  • Biere, A., and Honders, S. C. 2006. Coping with third parties in a nursery pollination mutualism: Hadena bicruris avoids oviposition on pathogen-infected, less rewarding Silene latifolia. New Phytol 169:719–727.

    Article  PubMed  Google Scholar 

  • Blair, A. C., and Wolfe, L. M. 2004. The evolution of an invasive plant: an experimental study with Silene latifolia. Ecology 85:3035–3042.

    Article  Google Scholar 

  • Bohlmann, J., Martin, D., Oldham, N. J., and Gershenzon, J. 2000. Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-ß-ocimene synthase. Arch. Biochem. Biophys 375:261–269.

    Article  PubMed  CAS  Google Scholar 

  • Brantjes, N. B. M. 1976. Riddles around the pollination of Melandrium album (Mill.) Garcke (Caryophyllaceae) during the oviposition by Hadena bicruris Hufn. (Noctuidae, Lepidoptera), I. Proc. Koninkl. Ned. Akad. Wetensch., Ser. C 79:1–12.

    Google Scholar 

  • Cardoza, Y. J., Alborn, H. T., and Tumlinson, J. H. 2002. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J. Chem. Ecol 28:161–174.

    Article  PubMed  CAS  Google Scholar 

  • Cardoza, Y. J., Teal, P. E. A., and Tumlinson, J. H. 2003. Effect of peanut plant fungal infection on oviposition preference by Spodoptera exigua and on host-searching behavior by Cotesia marginiventris. Environ. Entomol 32:970–976.

    Article  Google Scholar 

  • Clarke, K. R. and Gorley, R. N. 2006. Primer v6: User Manual/Tutorial. Primer-E, Plymouth, 1–91.

  • Clarke, K. R., and Warwick, R. M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd edn.Primer-E, Plymouth.

    Google Scholar 

  • Dötterl, S., Burkhardt, D., Jürgens, A., and Mosandl, A. 2007. Stereoisomeric pattern of lilac aldehyde in Silene latifolia, a plant involved in a nursery pollination system. Phytochemistry 68:499–504.

    Article  PubMed  CAS  Google Scholar 

  • Dötterl, S., Füssel, U., Jürgens, A., and Aas, G. 2005a. 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J. Chem. Ecol 31:2993–2998.

    Article  PubMed  CAS  Google Scholar 

  • Dötterl, S., and Jürgens, A. 2005. Spatial fragrance patterns in flowers of Silene latifolia: Lilac compounds as olfactory nectar guides? Plant Syst. Evol 255:99–109.

    Article  CAS  Google Scholar 

  • Dötterl, S., Jürgens, A., Seifert, K., Laube, T., Weißbecker, B., and Schütz, S. 2006. Nursery pollination by a moth in Silene latifolia: the role of odors in eliciting antennal and behaviorbehavioral responses. New Phytol 169:707–718.

    Article  PubMed  Google Scholar 

  • Dötterl, S., Wolfe, L. M., and Jürgens, A. 2005b. Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213.

    Article  PubMed  CAS  Google Scholar 

  • Dudareva, N., and Pichersky, E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633.

    Article  PubMed  CAS  Google Scholar 

  • Dufaÿ, M., and Anstett, M. C. 2003. Conflicts between plants and pollinators that reproduce within inflorescences: evolutionary variations on a theme. Oikos 100:3–14.

    Article  Google Scholar 

  • Elzinga, J. A., Van nouhuys, S., Van leeuwen, D. J., and Biere, A. 2007. Distribution and colonisation ability of three parasitoids and their herbivorous host in a fragmented landscape. Basic Appl. Ecol 8:75–88.

    Article  Google Scholar 

  • Feeny, P., Sachdev, K., Rosenberry, L., and Carter, M. 1988. Luteolin 7-O-(6″-O Malonyl)-beta-D-glucoside and trans chlorogenic acid: oviposition stimulants for the black swallowtail butterfly. Phytochemistry 27:3439–3448.

    Article  CAS  Google Scholar 

  • Haribal, M., and Renwick, J. A. A. 1996. Oviposition stimulants for the monarch butterfly: flavonol glycosides from Asclepias curassavica. Phytochemistry 41:139–144.

    Article  PubMed  CAS  Google Scholar 

  • Hatcher, P. E. 1995. Three-way interactions between plant-pathogenic fungi, herbivorous insects and their host plants. Biol. Rev 70:639–694.

    Article  Google Scholar 

  • Honda, K. 1995. Chemical basis of differential oviposition by lepidopterous insects. Arch. Insect. Biochem. Physiol 30:1–23.

    Article  CAS  Google Scholar 

  • Honda, K., Omura, H., Hayashi, N., Abe, F., and Yamauchi, T. 2001. Oviposition-stimulatory activity of phenanthroindolizidine alkaloids of host-plant origin to a danaid butterfly, Ideopsis similis. Physiol. Entomol 26:6–10.

    Article  CAS  Google Scholar 

  • Jaenike, J. 1978. On optimal oviposition behavior in phytophagous insects. Theor. Popul. Biol 14:350–356.

    Article  PubMed  CAS  Google Scholar 

  • Johne, A. B., Weißbecker, B., and Schütz, S. 2008. Approaching risk assessment of complex disease development in horse chestnut trees: a chemical ecologist’s perspective. J. Appl. Entomol 132:349–359.

    Article  Google Scholar 

  • Kaiser, R. 2006. Flowers and fungi use scents to mimic each other. Science 311:806–807.

    Article  PubMed  CAS  Google Scholar 

  • Kato, M., Takimura, A., and Kawakita, A. 2003. An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). Proc. Natl. Acad. Sci. U.S.A. 100:5264–5267.

    Article  PubMed  CAS  Google Scholar 

  • Komaki, R., Okui, M., Suzuki, Y., Someya, A., and Kato, Y. 2005. Lilac aldehyde-containing antifungal agents and antidandruff fragrant hair preparations containing them. Patent JP 2003-274481.

  • Kreck, M., Puschel, S., Wüst, M., and Mosandl, A. 2003. Biogenetic studies in Syringa vulgaris L.: Synthesis and bioconversion of deuterium-labeled precursors into lilac aldehydes and lilac alcohols. J. Agric. Food Chem 51:463–469.

    Article  PubMed  CAS  Google Scholar 

  • Laine, A. L. 2004. A powdery mildew infection on a shared host plant affects the dynamics of the Glanville fritillary butterfly populations. Oikos 107:329–337.

    Article  Google Scholar 

  • Marr, D. L. 1998. The effect of Microbotryum violaceum spores on pollen germination in Silene acaulis. Int. J. Plant Sci 159:221–227.

    Article  Google Scholar 

  • Mayhew, P. J. 1997. Adaptive patterns of host-plant selection by phytophagous insects. Oikos 79:417–428.

    Article  Google Scholar 

  • Mayhew, P. J. 2001. Herbivore host choice and optimal bad motherhood. Trends Ecol. Evol 16:165–167.

    Article  PubMed  Google Scholar 

  • Mühlemann, J. K., Waelti, M. O., Widmer, A., and Schiestl, F. P. 2006. Postpollination changes in floral odor in Silene latifolia: adaptive mechanisms for seed-predator avoidance? J. Chem. Ecol 32:1855–1860.

    Article  PubMed  CAS  Google Scholar 

  • Naef, A., Roy, B. A., Kaiser, R., and Honegger, R. 2002. Insect-mediated reproduction of systemic infections by Puccinia arrhenatheri on Berberis vulgaris. New Phytol 154:717–730.

    Article  Google Scholar 

  • Pichersky, E., Raguso, R. A., Lewinsohn, E., and Croteau, R. 1994. Floral scent production in Clarkia (Onagraceae): I. Localization and developmental modulation of monoterpene emission and Linalool synthase activity. Plant Physiol 106:1533–1540.

    PubMed  CAS  Google Scholar 

  • Plepys, D., Ibarra, F., and Löfstedt, C. 2002. Volatiles from flowers of Platanthera bifolia (Orchidaceae) attractive to the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae). Oikos 99:69–74.

    Article  CAS  Google Scholar 

  • Raguso, R. A., and Roy, B. A. 1998. ‘Floral’ scent production by Puccinia rust fungi that mimic flowers. Mol. Ecol 7:1127–1136.

    Article  PubMed  CAS  Google Scholar 

  • Rostás, M., Ton, J., Mauch-mani, B., and Turlings, T. C. J. 2006. Fungal infection reduces herbivore-induced plant volatiles of maize but does not affect naive parasitoids. J. Chem. Ecol 32:1897–1909.

    Article  PubMed  CAS  Google Scholar 

  • Roy, B. A., and Raguso, R. A. 1997. Olfactory versus visual cues in a floral mimicry system. Oecologia 109:414–426.

    Article  Google Scholar 

  • Scheirs, J., De Bruyn, L., and Verhagen, R. 2000. Optimization of adult performance determines host choice in a grass miner. Proc. R. Soc. Lond. Ser. B 267:2065–2069.

    Article  CAS  Google Scholar 

  • Schiestl, F. P., Steinebrunner, F., Schulz, C., Von Reuß, S., Francke, W., Weymuth, C., and Leuchtmann, A. 2006. Evolution of ‘pollinator’-attracting signals in fungi. Biol. Lett 2:401–404.

    Article  PubMed  CAS  Google Scholar 

  • Schütz, S., Weißbecker, B., Koch, U. T., and Hummel, H. E. 1999. Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens. Bioelectron 14:221–228.

    Article  Google Scholar 

  • Shykoff, J. A., and Bucheli, E. 1995. Pollinator visitation patterns, floral rewards and the probability of transmission of Microbotryum violaceum, a venereal disease of plants. J. Ecol 83:189–198.

    Article  Google Scholar 

  • Shykoff, J. A., and Kaltz, O. 1998. Phenotypic changes in host plants diseased by Microbotryum violaceum: Parasite manipulation, side effects, and trade-offs. Int. J. Plant Sci 159:236–243.

    Article  Google Scholar 

  • Simon, M., and Hilker, M. 2003. Herbivores and pathogens on willow: do they affect each other? Agric. For. Entomol 5:275–284.

    Article  Google Scholar 

  • StatSoft, Inc. 2004. STATISTICA (data analysis software system), Version 7.1. http://www.statsoft.com.

  • Thompson, J. N., and Cunningham, B. M. 2002. Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. N., and Pellmyr, O. 1991. Evolution of oviposition behavior and host preference in Lepidoptera. Annu. Rev. Entomol 36:65–89.

    Article  Google Scholar 

  • Witt, T., Jürgens, A., Geyer, R., and Gottsberger, G. 1999. Nectar dynamics and sugar composition in flowers of Silene and Saponaria species (Caryophyllaceae). Plant Biol 1:334–345.

    Article  CAS  Google Scholar 

  • Wolfe, L. M., Blair, A. C., and Penna, B. M. 2007. Does intraspecific hybridization contribute to the evolution of invasiveness?: an experimental test. Biol. Invasions 9:515–521.

    Article  Google Scholar 

  • Wolfe, L. M., Elzinga, J. A., and Biere, A. 2004. Increased susceptibility to enemies following introduction in the invasive plant Silene latifolia. Ecol. Lett 7:813–820.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Täuber for rearing moths, and two anonymous reviewers for their constructive comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dötterl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dötterl, S., Jürgens, A., Wolfe, L. et al. Disease Status and Population Origin Effects on Floral Scent: Potential Consequences for Oviposition and Fruit Predation in A Complex Interaction Between A Plant, Fungus, and Noctuid Moth. J Chem Ecol 35, 307–319 (2009). https://doi.org/10.1007/s10886-009-9601-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9601-0

Keywords

Navigation