Skip to main content

Advertisement

Log in

Cotton Plant, Gossypium hirsutum L., Defense in Response to Nitrogen Fertilization

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants respond to insect herbivory by producing dynamic changes in an array of defense-related volatile and nonvolatile secondary metabolites. A scaled response relative to herbivory levels and nutrient availability would be adaptive, particularly under nutrient-limited conditions, in minimizing the costs of expressed defensive pathways and synthesis. In this study, we investigated effects of varying nitrogen (N) fertilization (42, 112, 196, and 280 ppm N) on levels of cotton plant (Gossypium hirsutum) phytohormones [jasmonic acid (JA) and salicylic acid (SA)], terpenoid aldehydes (hemigossypolone, heliocides H1, H2, H3, and H4), and volatile production in response to beet armyworm (Spodoptera exigua) herbivory. Additional bioassays assessed parasitoid (Cotesia marginiventris) host-searching success in response to cotton plants grown under various N fertilizer regimes. At low N input (42 ppm N), herbivore damage resulted in significant increases in local leaf tissue concentrations of JA and volatiles and in systemic accumulation of terpenoid aldehydes. However, increased N fertilization of cotton plants suppressed S. exigua-induced plant hormones and led to reduced production of various terpenoid aldehydes in damaged mature leaves and undamaged young leaves. While increased N fertilization significantly diminished herbivore-induced leaf volatile concentrations, the parasitism of S. exigua larvae by the parasitoid C. marginiventris in field cages did not differ among N treatments. This suggests that, despite significant N fertilization effects on herbivore-induced plant defenses, at short range, the parasitoids were unable to differentiate between S. exigua larvae feeding on physiologically different cotton plants that share large constitutive volatile pools releasable when damaged by herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alborn, H. T., Röse, U. S. R., and McAuslane, H. J. 1996. Systemic induction of feeding deterrents in cotton plants by feeding of Spodoptera spp. larvae. J. Chem. Ecol. 22:919–932.

    Article  CAS  Google Scholar 

  • Berenbaum, M. R. 1995. The chemistry of defense: theory and practice. Proc. Natl. Acad. Sci. U.S.A. 92:2–8.

    Article  PubMed  CAS  Google Scholar 

  • Bezemer, T. M., Wagenaar, R., van Dam, N. M., and Wäckers, F. L. 2003. Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101:555–562.

    Article  Google Scholar 

  • Bezemer, T. M., Wagenaar, R., van Dam, N. M., van der Putten, W. H., and Wäckers, F. L. 2004. Above- and below-ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury. J. Chem. Ecol. 30:53–67.

    Article  PubMed  CAS  Google Scholar 

  • Browse, J., and Howe, G. A. 2008. New weapons and a rapid response against insect attack. Plant Physiol. 146:832–838.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Ruberson, J. R., and Olson, D. 2008. Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol. Exp. Appl. 126:245–255.

    Article  CAS  Google Scholar 

  • Chen, Y., Ruberson, J. R., Lewis, W. J., and Bednarz, C. 2006. Herbivore feeding and induction of systemic resistance in cotton plants, pp. 1510–1520, in Proceedings, Beltwide Cotton Conferences, National Cotton Council, Memphis, Tennessee.

  • Choh, Y., Shimoda, T., Ozawa, R., Dicke, M., and Takabayashi, J. 2004. Exposure of lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process? J. Chem. Ecol. 30:1305–1317.

    Article  PubMed  CAS  Google Scholar 

  • Cipollini, D. F., and Bergelson, J. 2001. Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. J. Chem. Ecol. 27:593–610.

    Article  PubMed  CAS  Google Scholar 

  • Coviella, C. E., Stipanovic, R. D., and Trumble, J. T. 2002. Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. J. Exp. Bot. 53:323–331.

    Article  PubMed  CAS  Google Scholar 

  • De Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Article  CAS  Google Scholar 

  • Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., and Posthumus, M. A. 1990. Plant strategies of manipulating predator–prey interactions through allelochemicals: prospects for application in pest control. J. Chem. Ecol. 16:3091–3118.

    Article  CAS  Google Scholar 

  • Dudt, J. F., and Shure, D. J. 1994. The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75:86–98.

    Article  Google Scholar 

  • Duffy, S. S., and Stout, M. J. 1996. Antinutritive and toxic components of plant defense against insects. Arch. Insect Biochem. Physiol. 32:3–37.

    Article  Google Scholar 

  • Eller, J. J., Tumlinson, J. H., and Lewis, W. J. 1988. Beneficial arthropod behavior mediated by airborne semiochemicals. II. Olfactometric studies of host location by the parasitoid Microplitis croceipes (Cresson) (Hymenoptera: Braconidae). J. Chem. Ecol. 14:425–434.

    Article  Google Scholar 

  • Elliger, C. A., Chan, B. G., and Waiss, A. C. Jr. 1978. Relative toxicity of minor cotton terpenoids compared to gossypol. J. Econ. Entomol. 71:161–164.

    CAS  Google Scholar 

  • Elzen, G. W., Williams, H. J., Bell, A. A., Stipanovic, R. D., and Vinson, S. B. 1985. Quantification of volatile terpenes of glanded and glandless Gossypium hirsutum cultivars and lines by gas chromatography. J. Agric. Food. Chem. 33:1079–1082.

    Article  CAS  Google Scholar 

  • Engelberth, J., Schmelz, E. A., Alborn, H. T., Cardoza, Y. J., Huang, J., and Tumlinson, J. H. 2003. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor phase extraction and gas chromatography-chemical ionization-mass spectrometry. Analyt. Biochem. 321:242–250.

    Article  Google Scholar 

  • Firn, R. D., and Jones, C. G. 2006. Do we need a new hypothesis to explain plant VOC emissions? Trends Plant Sci. 11:112–113.

    Article  PubMed  CAS  Google Scholar 

  • Gouinguené, S. P., and Turlings, T. C. J. 2002. The effects of abiotic factors on induced volatile emission in corn plants. Plant Physiol. 129:1296–1307.

    Article  PubMed  CAS  Google Scholar 

  • Gouinguené, S., Pickett, J. A., Wadhams, L. J., Birkett, M. A., and Turlings, T. C. J. 2005. Antennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata). J. Chem. Ecol. 31:1023–1038.

    Article  PubMed  CAS  Google Scholar 

  • Hemming, J. D. C., and Lindroth, R. L. 1999. Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. J. Chem. Ecol. 25:1687–1714.

    Article  CAS  Google Scholar 

  • Hoballah, M. E. F., Tamò, C., and Turlings, T. C. J. 2002. Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: is quality or quantity important? J. Chem. Ecol. 28:951–968.

    Article  PubMed  CAS  Google Scholar 

  • Krischik, V. A., and Denno, R. F. 1983. Individual, population, and geographic patterns in plant defense, pp. 463–512, in R. F. Denno, and M. S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed SystemsAcademic, New York, New York, USA.

    Google Scholar 

  • Lou, Y., and Baldwin, I. T. 2004. Nitrogen supply influences herbivore-induced direct and indirect defenses and transcriptional responses in Nicotiana attenuata. Plant Physiol. 135:496–506.

    Article  PubMed  CAS  Google Scholar 

  • Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C. J., and Tumlinson, J. H. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. Proc. Natl. Acad. Sci. U.S.A. 91:11836–11840.

    Article  PubMed  CAS  Google Scholar 

  • Loughrin, J. H., Manukian, A., Heath, R. R., and Tumlinson, J. H. 1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J. Chem. Ecol. 21:1217–1227.

    Article  CAS  Google Scholar 

  • Matsui, K. 2006. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 9:274–280.

    Article  PubMed  CAS  Google Scholar 

  • McAuslane, H. J., and Alborn, H. T. 1998. Systemic induction of allelochemicals in glanded and glandless isogenic cotton by Spodoptera exigua feeding. J. Chem. Ecol. 24:399–416.

    Article  CAS  Google Scholar 

  • McAuslane, H. J., Alborn, H. T., and Toth, J. P. 1997. Systemic induction of terpenoid aldehydes in cotton pigment glands by feeding of larval Spodoptera exigua. J. Chem. Ecol. 23:2861–2879.

    Article  CAS  Google Scholar 

  • McKey, D. 1974. Adaptive patterns in alkaloid physiology. Am. Nat. 108:305–320.

    Article  Google Scholar 

  • McKey, D. 1979. The distribution of secondary compounds within plants, pp. 55–133, in G. A. Rosenthal, and D. H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant MetabolitesAcademic, New York, New York, USA.

    Google Scholar 

  • McNeill, S., and Southwood, T. R. E. 1978. The role of nitrogen in the development of insect/plant relationships, pp. 77–98, in J. S. Harborne (ed.). Aspects of Plant and Animal CoevolutionAcademic, London.

    Google Scholar 

  • Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N., and Ohashi, Y. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39:500–507.

    CAS  Google Scholar 

  • Nordlund, D. A., Jones, R. L., and Lewis, W. J. 1981. Semiochemicals, Their Role in Pest Control. Wiley, New York, USA.

    Google Scholar 

  • Ohnmeiss, T., and Baldwin, I. T. 2000. Optimal defense theory predicts the ontogeny of an induced nicotine defense. Ecology 81:1765–1783.

    Article  Google Scholar 

  • Opitz, S., Kunert, G., and Gershenzon, J. 2008. Increased terpenoid accumulation in cotton (Gossypium hirsutum) foliage is a general wound response. J. Chem. Ecol. 34:508–522.

    Article  PubMed  CAS  Google Scholar 

  • Pena-Cortés, H., Albrecht, T., Prat, S., Weiler, E. W., and Willmitzer, L. 1993. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128.

    Article  Google Scholar 

  • Peñuelas, J., and Llusià, J. 2004. Plant VOC emissions: making use of the unavoidable. Trends Ecol. Evol. 19:402–404.

    Article  PubMed  Google Scholar 

  • Pichersky, E., Sharkey, T. D., and Gershenzon, J. 2006. Plant volatiles: a lack of function or a lack of knowledge? Trends Plant Sci. 11:421.

    Article  PubMed  CAS  Google Scholar 

  • Pickett, J. 1999. Insect-Plant Interactions and Induced Plant Defence. Wiley, New York, USA.

    Google Scholar 

  • Reinbothe, S., Mollenhauer, B., and Reinbothe, C. 1994. JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6:1197–1209.

    Article  PubMed  CAS  Google Scholar 

  • Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1998. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol. 24:303–319.

    Article  Google Scholar 

  • Sas Institute 1999. SAS/STAT User’s guide, version. 8th edn.SAS Institute, Inc., Cary, NC.

    Google Scholar 

  • Schmelz, E. A., Alborn, H. A., Engelberth, J., and Tumlinson, J. H. 2003a. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol. 133:295–306.

    Article  PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Alborn, H. T., Banchio, E., and Tumlinson, J. H. 2003b. Quantitative relationship between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Planta 216:665–673.

    PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Engelberth, J., Alborn, H. T., O’Donnell, P., Sammons, M., Toshima, H., and Tumlinson, J. H. 2003c. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc. Natl. Acad. Sci. U.S.A. 100:10552–10557.

    Article  PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Engelberth, J., Tumlinson, J. H., Block, A., and Alborn, H. T. 2004. The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J. 39:790–808.

    Article  PubMed  CAS  Google Scholar 

  • Stiling, P., and Moon, D. C. 2005. Quality or quantity: the direct and indirect effects of host plants on herbivores and their natural enemies. Oecologia 142:413–420.

    Article  PubMed  Google Scholar 

  • Stipanovic, R. D., Altman, D. W., Begin, D. L., Greenblatt, G. A., and Benedict, J. H. 1988. Terpenoid aldehydes in upland cottons: analysis by aniline and HPLC methods. J. Agric. Food Chem. 36:509–515.

    Article  CAS  Google Scholar 

  • Stout, M. J., Brovont, R. A., and Duffey, S. S. 1998. Effects of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. J. Chem Ecol. 24:945–963.

    Article  CAS  Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., Heath, R. R., Proveaux, A. T., and Doolittle, R. E. 1991a. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J. Chem. Ecol. 17:2235–2251.

    Article  CAS  Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., Eller, F. J., and Lewis, W. J. 1991b. Larval-damaged plants: sources of volatile synomones that guide the parasitoid Cotesia marginiventris to the micro-habitat of its hosts. Entomol. Exp. Appl. 58:75–82.

    Article  Google Scholar 

  • Van Wassenhove, F. A., Dirinck, P. J., Schamp, N. M., and Vulsteke, G. A. 1990. Effects of nitrogen fertilizers on celery volatiles. J. Agric. Food Chem. 38:220–226.

    Article  CAS  Google Scholar 

  • Wäckers, F. L., and Bonifay, C. 2004. How to be sweet? Extrafloral nectar allocation by Gossypium hirsutum fits optimal defense theory predictions. Ecology 85:1512–1518.

    Article  Google Scholar 

  • Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.

    PubMed  CAS  Google Scholar 

  • Weissbecker, B., Van Loon, J. J. A., and Dicke, M. 1999. Electroantennogram responses of a predator, Perillus bioculatus, and its prey, Lepinotarsa decemlineata, to plant volatiles. J. Chem. Ecol. 25:2313–2325.

    Article  CAS  Google Scholar 

  • Wu, J., Hettenhausen, C., Schuman, M. C., and Baldwin, I. T. 2008. A comparison of two Nicotiana attenuata accessions reveals large differences in signaling induced by oral secretions of the specialist herbivore Manduca sexta. Plant Physiol. 146:927–939.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Georgia Cotton Commission, Cotton Incorporated, and Grant-In-Aid of Research from the National Academy of Sciences, administered by Sigma Xi, the scientific Research Society to Y. Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Ruberson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Schmelz, E.A., Wäckers, F. et al. Cotton Plant, Gossypium hirsutum L., Defense in Response to Nitrogen Fertilization. J Chem Ecol 34, 1553–1564 (2008). https://doi.org/10.1007/s10886-008-9560-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9560-x

Keywords

Navigation