Skip to main content
Log in

Solid-Phase Microextraction Method For In Vivo Measurement of Allelochemical Uptake

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Solid-phase microextraction (SPME) was used to measure allelochemical uptake by tomato plants in vivo. Exogenously applied 1,8-cineole was rapidly taken up by tomato, with the first traces of cineole being detected in the tomato stem just 1–2 h after a single application of 0.5 mM cineole to soil. The pulse of cineole persisted in the tomato stem for 72 h. When cineole concentrations were measured 24 h after a single application, trace amounts of cineole could be detected in tomato stem fluid at application concentrations as low as 50 μM. Tomato was also found to take up camphor, menthol, and coumarin, but not carveol. In preliminary tests with common ragweed (Artemisia annuifolia L.) and purslane (Portulaca oleraceae L.) plants growing in garden beds, both ragweed and purslane took up 1,8-cineole, and purslane also took up camphor. The quantitation of allelochemical uptake by plants is considered to be a crucial test of hypotheses of allelopathic effects, but demonstration of allelochemical uptake has had to be inferred based on observed toxicity due to the lack of methods to measure uptake in vivo. This new technique now provides a means of tracking compounds within target plants. Furthermore, the demonstrated rapid uptake of 1,8-cineole by plants suggests a potential mechanism whereby brief pulses of allelochemicals over an extended period of time might be able to exert an allelopathic effect on plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahim, D., Braguini, W. L., Kelmer-bracht, A. M., and Ishii-iwamoto, E. L. 2000. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol 26:611–624.

    Article  CAS  Google Scholar 

  • Arthur, C. L., and Pawliszyn, J. B. 1990. Solid-phase microextraction with thermal-desorption using fused-silica optical fibers. Anal. Chem 62:2145–2148.

    Article  CAS  Google Scholar 

  • Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., and Vivanco, J. M. 2003. Allelopathy and exotic plant invasion: From molecules and genes to invasive success. Science 301:1377–1380.

    Article  PubMed  CAS  Google Scholar 

  • Barney, J. N., Hay, A. G., and Weston, L. A. 2005. Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J. Chem. Ecol 31:247–265.

    Article  PubMed  CAS  Google Scholar 

  • Blair, A. C., Nissen, S., Brunk, G. R., and Hufbauer, R. A. 2006. A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in spotted knapweed invasion success. J. Chem. Ecol 32:2327–2331.

    Article  PubMed  CAS  Google Scholar 

  • Boussahel, R., Bouland, S., Moussaoui, K. M., Baudu, M., and Montiel, A. 2002. Determination of chlorinated pesticides in water by SPME/GC. Water Res 36:1909–1911.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J. C., Lee, H. J., Lim, S. J., Kim, S. E., and Guh, J. O. 2001. Comparative absorption, translocation, and metabolism of foliar-applied oxyfluorfen in wheat and barley. Pestic. Biochem. Phys 70:118–125.

    Article  CAS  Google Scholar 

  • Custódio, L., Serra, H., Nogueira, J. M. F., Gonçalves, S., and omano, A. 2006. Analysis of volatiles emitted by whole flowers and isolated flower organs of the carob tree using HS-SPME-GC/MS. J. Chem. Ecol 32:929–942.

    Article  PubMed  CAS  Google Scholar 

  • Dalton, B. R., Weed, S. B., and Blum, U. 1987. Plant phenolic acids in soils: a comparison of extraction procedures. Soil Sci. Soc. Am. J 51:1515–1521.

    Article  CAS  Google Scholar 

  • Demoraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Article  CAS  Google Scholar 

  • Deng, C. H., Qian, J., Zhu, W. M., Yang, X., and Zhang, X. M. 2005. Rapid determination of methyl salicylate, a plant-signaling compound, in tomato leaves by direct sample introduction and thermal desorption followed by GC-MS. J. Sep. Sci 28:1137–1142.

    Article  PubMed  CAS  Google Scholar 

  • Deng, C. H., Zhang, X. M., Zhu, W. M., and Qian, J. 2004a. Gas chromatography-mass spectrometry with solid-phase microextraction method for determination of methyl salicylate and other volatile compounds in leaves of Lycopersicon esculentum. Anal. Bioanal. Chem 378:518–522.

    Article  PubMed  CAS  Google Scholar 

  • Deng, C. H., Zhang, X. M., Zhu, W. M., and Qian, J. 2004b. Investigation of tomato plant defence response to tobacco mosaic virus by determination of methyl salicylate with SPME-capillary GC-MS. Chromatographia 59:263–268.

    CAS  Google Scholar 

  • Fuerst, E. P., and Putnam, A. R. 1983. Separating the competitive and allelopathic components of interference: theoretical principles. J. Chem. Ecol 18:1683–1691.

    Google Scholar 

  • Gallet, C., and Pellissier, F. 1997. Phenolic compounds in natural solutions of a coniferous forest. J. Chem. Ecol 23:2401–2412.

    Article  CAS  Google Scholar 

  • Kalnay, P. A., and Glenn, S. 2000. Translocation of nicosulfuron and dicamba in hemp dogbane (Apocynum cannabinum). Weed Technol 14:476–479.

    Article  CAS  Google Scholar 

  • Koitabashi, R., Suzuki, T., Kawazu, T., Sakai, A., Kuroiwa, H., and Kuroiwa, T. 1997. 1,8-Cineole inhibits root growth and DNA synthesis in the root apical meristem of Brassica campestris L. J. Plant Res 110:1–6.

    Article  CAS  Google Scholar 

  • Lord, H. L., Möder, M., Popp, P., and Pawliszyn, J. B. 2004. In vivo study of triazine herbicides in plants by SPME. Analyst 129:107–108.

    Article  PubMed  CAS  Google Scholar 

  • Muller, C. H. 1965. Inhibitory terpenes volatilized from Salvia shrubs. Bull. Torrey Bot. Club 92:38–45.

    Article  CAS  Google Scholar 

  • Muller, C. H., Muller, W. H., and Haines, B. L. 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473.

    Article  PubMed  CAS  Google Scholar 

  • Musteata, F. M., Musteata, M. L., and Pawliszyn, J. 2007. Fast in vivo microextraction: A new tool for clinical analysis. Clin. Chem 52:708–715.

    Article  CAS  Google Scholar 

  • Nishida, N., Tamotsu, S., Nagata, N., Saito, C., and Sakai, A. 2005. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol 31:1187–1203.

    Article  PubMed  CAS  Google Scholar 

  • Paavolainen, L., Kitunen, V., and Smolander, A. 1998. Inhibition of nitrification in forest soil by monoterpenes. Plant Soil 205:147–154.

    Article  CAS  Google Scholar 

  • Peñuelas, J., ibas-carbo, M., and Giles, L. 1996. Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase. J. Chem. Ecol 22:801–805.

    Article  Google Scholar 

  • Ponder, F. Jr., and Tadros, S. H. 1985. Juglone concentration in soil beneath black walnut interplanted with nitrogen-fixing species. J. Chem. Ecol 11:937–942.

    Article  CAS  Google Scholar 

  • Romagni, J. G., Allen, S. N., and Dayan, F. E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol 26:303–313.

    Article  CAS  Google Scholar 

  • Shoup, D., and Al-khatib, K. 2005. Fate of acifluorfen and lactofen in common waterhemp (Amaranthus rudis) resistant to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci 53:284–293.

    Article  CAS  Google Scholar 

  • Shulaev, V., Silverman, P., and askin, I. 1997. Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385:718–721.

    Article  CAS  Google Scholar 

  • Tang, C.-S., and Young, C.-C. 1982. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol 69:155–160.

    Article  PubMed  CAS  Google Scholar 

  • Tanrisever, N., Fischer, N. H., and Williamson, G. B. 1988. Menthofurans from Calamintha ashei: Effects on Schizachyrium scoparium and Lactuca sativa. Phytochemistry 27:2523–2526.

    Article  CAS  Google Scholar 

  • Turlings, T. C., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.

    Article  PubMed  CAS  Google Scholar 

  • Vaughn, S. F., and Spencer, G. F. 1993. Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci 41:114–119.

    CAS  Google Scholar 

  • Weidenhamer, J. D. 2005. Biomimetic measurement of allelochemical dynamics in the rhizosphere. J. Chem. Ecol 31:221–236.

    Article  PubMed  CAS  Google Scholar 

  • Weidenhamer, J. D., Macias, F. A., Fischer, N. H., and Williamson, G. B. 1993. Just how insoluble are monoterpenes? J. Chem. Ecol 19:1799–1807.

    Article  CAS  Google Scholar 

  • Weidenhamer, J. D., Menelaou, M., Macias, F. A., Fischer, N. H., ichardson, D. R., and Williamson, G. B. 1994. Allelopathic potential of menthofuran monoterpenes from Calamintha ashei. J. Chem. Ecol 20:3345–3359.

    Article  CAS  Google Scholar 

  • White, C. S. 1991. The role of monoterpenes in soil nitrogen cycling processes in ponderosa pine. Biogeochemistry 12:43–68.

    Article  CAS  Google Scholar 

  • White, C. S. 1994. Monoterpenes: Their effects on ecosystem nutrient cycling. J. Chem. Ecol 20:1381–1406.

    Article  CAS  Google Scholar 

  • Williamson, G. B., Fischer, N. H., Richardson, D. R., and De la peña, A. 1989. Chemical inhibition of fire-prone grasses by fire-sensitive shrub, Conradina canescens. J. Chem. Ecol 15:1567–1577.

    Article  CAS  Google Scholar 

  • Zunino, M. P., and Zygadlo, J. A. 2005. Changes in the composition of phospholipid fatty acids and sterols of maize root in response to monoterpenes. J. Chem. Ecol 31:1269–1283.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation, DEB-0515826.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Weidenhamer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loi, R.X., Solar, M.C. & Weidenhamer, J.D. Solid-Phase Microextraction Method For In Vivo Measurement of Allelochemical Uptake. J Chem Ecol 34, 70–75 (2008). https://doi.org/10.1007/s10886-007-9401-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9401-3

Keywords

Navigation