Skip to main content
Log in

The Distribution of Two Major Iridoids in Different Organs of Antirrhinum majus L. at Selected Stages of Development

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Two iridoid glucosides isolated from leaves of Antirrhinum majus L. were identified as the known compounds antirrhinoside and antirrhide. Plants grown hydroponically demonstrated that antirrhinoside is present in all plant organs including the roots. In contrast, antirrhide is found only in leaves. Furthermore, both iridoids were identified in the main stem axillary leaves and leaves on the lateral branches. The highest concentrations of antirrhinoside were found in the main and lateral stems as well as the buds and flowers. As leaves age, for both cultivars, the levels of antirrhinoside drop significantly, and there is a corresponding increase in antirrhide. In spite of the different genetic backgrounds of the two cultivars, the overall distribution of the iridoids was similar during vegetative and flowering development. Radiolabeling of recently expanded axillary leaves with 14CO2 showed that both antirrhinoside and antirrhide were prominently labeled in the laminar tissue. However, only 14C-antirrhinoside was recovered in the subtending petiole tissue, consistent with the suggestion that it is a phloem mobile compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Rehaily, A. J., Abdel-Kader, M. S., Ahmad, M. S., and Mossa, J. S. 2006. Iridoid glucosides from Kickxia abhaica D.A. Sutton from Scrophulariaceae. Phytochemistry 67:429–432.

    Article  PubMed  CAS  Google Scholar 

  • Ball Redbook, Crop Production Vol. II 2003. Antirrhinum, pp.230–239, in D. Hamrick (ed.). Ball Publishing, Batavia, IL, USA.

  • Baruah, C. C., Gupta, P. P., Nath, A. Patnaik, G. K. Late, and Dhawan, B. N. 1998. Anti-allergic and anti-anaphylatic activity of picrolev—a standardised iridoid glycoside fraction of Picrorhiza kurroa. Pharm. Res. 38:487–492.

    Article  CAS  Google Scholar 

  • Bianco, A., Caciola, P., Guiso, M., Iavarone, C., and Trogola, C. 1981. Iridoids. XXXI. Carbon-13 nuclear magnetic resonance spectroscopy of free iridoid glucosides in D2O solution. Gazz. Chim. Ital. 111:201–206.

    CAS  Google Scholar 

  • Boros, C. A. and Stermitz, F. R. 1990. Iridoids: an updated review. Part I. J. Nat. Prod. 53:1055–1147.

    Article  CAS  Google Scholar 

  • Boros, C. A. and Stermitz, F. R. 1991. Iridoids: an updated review. Part II. J. Nat. Prod. 54:1173–1246.

    Article  CAS  Google Scholar 

  • Boros, C. A., Stermitz, F. R., and Mcfarland, N. 1991. Processing of iridoid glycoside antirrinoside from Maurandya antirrhiniflora (Scrophulariaceae) by Meris paradoxa (Geometridae) and Lepipolys species (Noctuidae). J. Chem. Ecol. 17:1123–1133.

    Article  CAS  Google Scholar 

  • Bowers, M. D. and Puttick, G. M. 1988. Response of generalist and specialist insects to qualitative allelochemical variation. J. Chem. Ecol. 14:319–334.

    Article  CAS  Google Scholar 

  • Bowers, M. D. and Puttick, G. M. 1989. Iridoid glycosides and insect feeding preferences: gypsy moths (Lymantria dispar, Lymantriidae) and buckeyes (Junonia coenia, Nymphalidae). Ecol. Entom. 14:247–256.

    Article  Google Scholar 

  • Bowers, M. D., Collinge, S. K., Gamble, S. E., and Schmitt, J. 1992. Effects of genotype, habitat, and seasonal variation on iridoid glycoside content of Plantago lanceolata (Plantaginaceae) and the implications for insect herbivores. Oecologia 91:201–207.

    Article  Google Scholar 

  • Breinholt, J., Damtoft, S., Demuth, H., Jensen, S. R., and Nielson, B. J. 1992. Biosynthesis of antirrhinoside in Antirrhinum majus. Phytochemistry 31:795–797.

    CAS  Google Scholar 

  • Damtoft, S., Jensen, S. R., and Jessen, C. U. 1993. Intermediates between 8-epi-deoxyloganic acid and 6,10-dideoxyaucubin in the biosynthesis of antirrhinoside. Phytochemistry 33:1087–1088.

    Article  CAS  Google Scholar 

  • Damtoft, S., Jensen, S. R., and Shacht, M. 1995. Last stages in the biosynthesis of antirrhinoside. Phytochemistry 39:549–551.

    Article  CAS  Google Scholar 

  • El-Naggar, L. J., and Beal, J. L. 1980. Iridoids: A Review. J. Nat. Prod. 43:649–707.

    Article  CAS  Google Scholar 

  • Ercil, D., Sakar, M. K., De Olmo, E., and San Feliciano, A. 2004. Chemical constituents of Linaria aucheri. Turk. J. Chem. 28:133–139.

    CAS  Google Scholar 

  • Franzyk, H., Frederiksen, S. M., Jensen, S. R., Thale, Z., and Olsen, C. E. 1999. Halohydrins and polyols derived from antirrhinoside: Structural revisions of muralioside and epimuralioside. J. Nat. Prod. 62:275–278.

    Article  PubMed  CAS  Google Scholar 

  • Gowan, E., Lewis, B. A., and Turgeon, R. 1995. Phloem transport of antirrhinoside, an iridoid glycoside, in Asarina scandens (Scrophulariaceae). J. Chem. Ecol. 21:1781–1788.

    Article  CAS  Google Scholar 

  • Grayson, D. H. 1996. Monoterpenoids. Nat. Prod. Rep. 13:195–226.

    Article  PubMed  CAS  Google Scholar 

  • Guiso, M. and Scarpati, M. L. 1969. Iridoidi. Nota VI. Isolamento dall’Antirrhinum (maius o tortuosum) del 5-O-β-glucosil-antirrinoside. Gazz. Chim. Ital. 99:800–806.

    CAS  Google Scholar 

  • Høgedal, B. D. and Mølgaard, P. 2000. HPLC analysis of the seasonal and diurnal variation of iridoids in cultivars of Antirrhinum majus. Biochem. Syst. Ecol. 28:949–962.

    Article  Google Scholar 

  • Jensen, S. R. 1992. Systematic implications of the distribution of iridoids and other chemical compounds in the Loganiaceae and other families of the Asteridae. Ann. Mo. Bot. Gard. 79:284–302.

    Article  Google Scholar 

  • Jiao, J. and Grodzinski, B. 1996. The effect of temperature and photorespiratory conditions on export of sugars during steady-state photosynthesis in Salvia splendens. Plant Physiol. 111:169–178.

    PubMed  CAS  Google Scholar 

  • Johnstone, M., Chatterton, S., Sutton, J. C. and Grodzinski, B. 2005. Net carbon gain and growth of bell peppers, Capsicum annuum ‘Cubico’, following root infection by Pythium aphanidermatum. Phytopathology 95:354–361.

    Google Scholar 

  • Kitagawa, I., Tani, T., Akita, K. and Yosioka, I. 1973. On the constituents of Linaria japonica MIQ I. The structure of linarioside, a new chlorinated iridoid glycoside and identification of two related glucosides. Chem. Pharm. Bull. 21:1978–1987.

    CAS  Google Scholar 

  • Klockars, G. K., Bowers, M. D., and Cooney, B. 1993. Leaf variation in iridoid glycoside content of Plantago lanceolata (Plantaginaceae) and oviposition of the buckeye, Junonia coenia (Nymphalidae). Chemoecology 4:72–78.

    Article  CAS  Google Scholar 

  • Leonardos, E. D., Savitch, L. V., Huner, N. P. A., Oquist ,G., and Grodzinski, B. 2003. Daily photosynthetic and C-export patterns in winter wheat leaves during cold stress and acclimation. Physiol. Plant. 117:521–531.

    Article  PubMed  CAS  Google Scholar 

  • Marak, H. B., Biere, A., and Van Damme, J. M. M. 2002. Two herbivore-deterrent glycosides reduce the in-vitro growth of a specialist but not of a generalist pathogenic fungus of Plantago lanceolata L. Chemoecology 12:185–192.

    Article  CAS  Google Scholar 

  • Markham, K. R. 1982. Techniques of Flavonoid Identification. Academic Press Inc., New York, USA.

    Google Scholar 

  • McKey, D. 1974. Adaptive patterns in alkaloid physiology. Am. Nat. 108:305–320.

    Article  Google Scholar 

  • Mead, E. W. and Stermitz, F. R. 1993. Content of iridoid glycosides in different parts of Castilleja integra. Phytochemistry 32:1155–1158.

    Article  CAS  Google Scholar 

  • Ohnmeiss, T. E. and Baldwin, I. T. 2000. Optimal defense theory predicts the ontogeny of an induced nicotine defense. Ecology 81:1765–1783.

    Article  Google Scholar 

  • Ortiz-Uribe, N., Johnstone, M. B., Iqbal, M. J., Lin, W., Sutton, J., and Grodzinski, B. 2005. Net carbon gain and canopy development of peppers and snapdragons following root infection by Pythium, in A. van der Est and D. Bruce (eds.). Photosynthesis: Fundamental Aspects to Global Perspectives. Proceedings of the International Society of Photosynthesis 2:1026–1028.

  • Otsuka, H. 1993. Iridoid glycosides from Linaria japonica. Phytochemistry 33:617–622.

    Article  CAS  Google Scholar 

  • Pardo, F., Perich, F., Torres, R., and Monache, F. D. 1998. Phytotoxic iridoid glucosides from the roots of Verbascum thapsus. J. Chem. Ecol. 24:645–653.

    Article  CAS  Google Scholar 

  • Reinhardt, D. and Kuhlemeier, C. 2002. Plant Architecture. Embo Rep. 3:846–851.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, M. N. 1992. Snapdragons, pp. 93–112, in R. A. Larson (ed.). Introduction to Floriculture. Academic Press, New York, USA.

    Google Scholar 

  • SAS Institute, Inc. 2005. SAS Procedures Guide v.9.1. Cary, NC, USA.

  • Scarpati, M. L. and Guiso, M. 1969. Iridoidi. Nota VII. Struttura e configurazione dell’Antirride. Gazz. Chim. Ital. 99:807–815.

    CAS  Google Scholar 

  • Scarpati, M. L., Guiso, M., and Esposito, P. 1968. Iridoidi (V). Struttura e configurazione dell’Antirrinoside. Gazz. Chim. Ital. 98:177–190.

    CAS  Google Scholar 

  • Song, Y., Li, S-L., Wu, M-H., Li, H-J., and Li, P. 2006. Qualitative and quantitative analysis of iridoid glycosides in the flower buds of Lonicera species by capillary high performance liquid chromatography coupled with mass spectrometric detector. Anal. Chim. Acta 564:211–218.

    Article  CAS  Google Scholar 

  • Stamp, N. E. and Bowers, M. D. 1994. Effects of cages, plant age and mechanical clipping on plantain chemistry. Oecologia 99:66–71.

    Article  Google Scholar 

  • Tasdemir, D., Güner, N. D., Perozzo, R., Brun, R., Dönmez, A. A., Çalis, I., and Rüedi, P. 2005. Anti-protozoal and plasmodial FabI enzyme inhibiting metabolites of Scrophularia lepidota roots. Phytochemistry 66:355–362.

    Article  PubMed  CAS  Google Scholar 

  • Voitsekhovskaja, O. V., Koroleva, O. A., Batashev, D. R., Knop, C., Tomos, A. D. Gamalei, Y. V., Heldt, H-W., and Lohaus, G. 2006. Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata? Plant Physiol. 140:383–395.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Don Hughes of the Department of Chemistry, McMaster University, Hamilton, Ontario, Canada for obtaining the NMR spectra and George Lin for help in the laboratory. We also thank the following funding agencies: National Sciences and Engineering Research Council Canada, Flowers Canada (Ontario) Ltd. and Ontario Ministry of Agriculture, Food and Rural Affairs. This work was also supported by an Ontario Centers of Excellence ETech Cooperative Research Award held by R.R.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford W. Beninger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beninger, C.W., Cloutier, R.R., Monteiro, M.A. et al. The Distribution of Two Major Iridoids in Different Organs of Antirrhinum majus L. at Selected Stages of Development. J Chem Ecol 33, 731–747 (2007). https://doi.org/10.1007/s10886-007-9253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9253-x

Keywords

Navigation