Skip to main content
Log in

Response of generalist and specialist insects to qualitative allelochemical variation

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We examined the effects of a set of four biosynthetically related iridoid glycosides, aucubin, catalpol, loganin, and asperuloside, on larvae of a generalist,Lymantria dispar (Lymantriidae), the gypsy moth, and an adapted specialist, the buckeye,Junonia coenia (Nymphalidae). In general,L. dispar grew and survived significantly less well on artificial diets containing iridoid glycoside, compared to a control diet without iridoid glycosides. In choice tests, previous exposure to a diet containing iridoid glycosides caused larvae subsequently to prefer iridoid glycoside-containing diets even though they were detrimental to growth and survival. In contrast,J coenia larvae grew and survived better on diets with aucubin and catalpol, the two iridoid glycosides found in the host plantPlantago lanceolata (Plantaginaceae), than on diets with no iridoid glycoside or with loganin and asperuloside. The results of choice tests of diets with and without iridoid glycosides and between diets with different iridoid glycosides reflected these differences as well. These results are discussed in terms of (1) differences between generalists and specialists in their response to qualitative variation in plant allelochemical content, (2) the induction of feeding preferences, and (3) the evolution of qualitative allelochemical variation as a plant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbosa, P., Martinat, P., andWaldvogel, M. 1986. Development, fecundity and survival of the herbivoreLymantria dispar and the number of plant species in its diet.Ecol. Entomol. 11:1–6.

    Google Scholar 

  • Bentley, M.D., Leonard, D.E., Reynolds, E.K., Leach, S., Beck, A.B., andMurakoshi, I. 1984a. Lupine alkaloids as larval feeding deterrents for spruce budworm,Choristoneura fumiferana (Lepidoptera: Tortricidae).Ann. Entomol. Soc. Am. 77:398–400.

    Google Scholar 

  • Bentley, M.D., Leonard, D.E., andBushway, R.J. 1984b.Solanum alkaloids as larval feeding deterrents for spruce budworm,Choristoneura fumiferana (Lepidoptera: Tortricidae).Ann. Entomol. Soc. Am. 77:401–403.

    Google Scholar 

  • Berenbaum, M. 1985. Brementown revisited: Interactions among allelochemicals in plants.Recent Adv. Phytochem. 19:139–169.

    Google Scholar 

  • Berenbaum, M., Zangerl, A.R., andNitao, J.K. 1986. Constraints on chemical coevolution: wild parsnips and the parsnip webworm.Evolution 40:1215–1228.

    Google Scholar 

  • Bernays, E.A., andDeluca, C. 1981. Insect anti-feedant properties of an iridoid glycoside: Ipolamiide.Experientia 37:1289–1290.

    Google Scholar 

  • Blau, P.A., Feeny, P., Contardo, L., andRobson, D. 1978. Allylglucosinolate and herbivorous caterpillars: A contrast in toxicity and tolerance.Science 200:1296–1298.

    Google Scholar 

  • Bobbitt, J.M., andSegebarth, K.P. 1969. Iridoid glycosides and similiar substances, pp. 1–145,in W.I. Taylor and A.R. Battersby (eds.). Cyclopentanoid Terpene Derivatives. Marcel Dekker, New York.

    Google Scholar 

  • Bobbitt, J.M., Schmid, H., andAfrica, T.B. 1961.Catalpa glycosides. I. the characterization of catalposide.J. Org. Chem. 26:3090–3094.

    Google Scholar 

  • Bowers, M.D. 1980. Unpalatability as a defense strategy ofEuphydryas phaeton (Lepidoptera: Nymphalidae).Evolution 34:367–375.

    Google Scholar 

  • Bowers, M.D. 1981. Unpalatability as a defense strategy of western checkerspot butterflies (Euphydryas, Nymphalidae).Evolution 35:367–375.

    Google Scholar 

  • Bowers, M.D. 1983. Iridoid glycosides and larval hostplant specificity in checkerspot butterflies (Euphydryas: Nymphalidae).J. Chem. Ecol. 9:475–493.

    Google Scholar 

  • Bowers, M.D. 1984. Iridoid glycosides and host-plant specificity in larvae of the Buckeye butterfly,Junonia coenia (Nymphalidae).J. Chem. Ecol. 10:1567–1577.

    Google Scholar 

  • Bowers, M.D., andPuttick, G.M. 1986. The fate of ingested iridoid glycosides in lepidopteran herbivores.J. Chem. Ecol. 12:169–178.

    Google Scholar 

  • Brower, L.P. 1984. Chemical defense in butterflies, pp. 109–134,in R.I. Vane-Wright and P.R. Ackery (eds.). The Biology of Butterflies, Symposium of the Royal Entomological Society of London, 11. Academic Press, London.

    Google Scholar 

  • Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., andTuskes, P.M. 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus, reared on the milkweed,Asclepias eriocarpa, in California.J. Chem. Ecol. 8:579–633.

    Google Scholar 

  • Chambliss, O.L., andJones, C.M. 1966. Cucurbitacins: Specific insect attractants in Cucurbitaceae.Science 153:1392–1393.

    Google Scholar 

  • Cohen, J. 1983. Chemical Interactions among Milkweed Plants (Asclepiadaceae) and Lepidopteran Herbivores. PhD thesis. University of Florida, Gainesville.

    Google Scholar 

  • Cooper-Driver, G.A., Finch, S., Swain, T., andBernays, E. 1977. Seasonal variation in secondary plant compounds in relation to the palatability ofPteridium aquilinum.Biochem. Syst. Ecol. 5:211–218.

    Google Scholar 

  • Dahlgren, R., Jensen, S.R., andNielsen, B.J. 1981. A revised classification of the Angiosperms with comments on the correlation between chemical and other characters, pp. 149–204,in D.A. Young andD.S. Seigler (eds.. Phytochemistry and Angiosperm Phylogeny. Praeger, New York.

    Google Scholar 

  • Deboer, G., andHanson, F.E. 1984. Foodplant selection and induction of feeding preference among host and non-host plants in larvae of the tobacco hornwormManduca sexta.Entomol. Exp. Appl. 35:177–193.

    Google Scholar 

  • Dolinger, P.M., Ehrlich, P.R., Fitch, W.L., andBreedlove, D.E. 1973. Alkaloid and predation patterns in Colorado lupine populations.Oecologia 13:191–204.

    Google Scholar 

  • Ehrlich, P.R., andRaven, P.H. 1964. Butterflies and plants: A study in coevolution.Evolution 18:586–608.

    Google Scholar 

  • El-Naggar, L.J., andBeal, J.L. 1980. Iridoids: A review.J. Nat. Prod. 3:649–707.

    Google Scholar 

  • El-Naggar, S.F., andDoskotch, R.W. 1980. Specioside: A new iridoid glycoside fromCatalpa speciosa.J. Nat. Prod. 43:524–526.

    Google Scholar 

  • Feeny, P. 1976. Plant apparency and chemical defense.Recent Adv. Phytochem. 10:1–40.

    Google Scholar 

  • Gershenzon, J., andMabry, T.J. 1983. Secondary metabolites and the higher classification of angiosperms.Nord.J. Bot. 3:5–34.

    Google Scholar 

  • Gibbs, R.D. 1974. Chemotaxonomy of Flowering Plants. McGill-Queens University Press, Montreal.

    Google Scholar 

  • Gould, F. 1984. Mixed function oxidases: A devil's advocate position.Ecol. Entomol. 9:29–34.

    Google Scholar 

  • Harris, G.H., Stermitz, F.R., andJing, W. 1986b. Iridoids and alkaloids fromCastilleja (Scrophulariaceae) hostplants forPlatyptilia pica (Lepidoptera: Pterophoridae): Rhexifoline content ofP. pica.Biochem. Syst. Ecol. 14:499–506.

    Google Scholar 

  • Hegnauer, R. 1973. Chemotaxonomie der Pflanzen, Vol. 6. Berkauser Verlag, Basel.

    Google Scholar 

  • Hegnauer, R., andKooiman, P. 1978. Die systematische Bedeutung von iridoiden Inhaltsstoffen im Rahmen von Wettstein's Tubiflorae.Planta Med. 33:1–33.

    Google Scholar 

  • Inouye, H. 1971. Biosynthesis of iridoid and secoiridoid glucosides, pp. 290–313,in H. Wagner and L. Horhammer (eds.). Pharmacognosy and Phytochemistry. Springer, New York.

    Google Scholar 

  • Jensen, S.R., Nielsen, B.J., andDahlgren, R. 1975. Iridoid compounds, their occurrence and systematic importance in the angiosperms.Bot. Not. 128:148–180.

    Google Scholar 

  • Jermy, T., Hanson, F.E., andDethier, V.G. 1968. Induction of specific foodplant preferences in lepidopterous larvae.Entomol. Exp. Appl. 11:211–230.

    Google Scholar 

  • Jirawongse, V. 1964. A Chemotaxonomic Study of the Scrophulariaceae. PhD thesis. Purdue University. University Microfilms, Ann Arbor Michigan.

    Google Scholar 

  • Kaplan, M.A.C., andGottlieb, O.R. 1982. Iridoids as systematic markers in dicotyledons.Biochem. Syst. Ecol. 10:329–347.

    Google Scholar 

  • Kooiman, P. 1970. The occurrence of iridoid glycosides in the Scrophulariaceae.Acta Bot. Neerl. 19:329–340.

    Google Scholar 

  • Leonard, D.E. 1974. Recent developments in ecology and control of the gypsy moth.Annu. Rev. Entomol. 19:197–229.

    Google Scholar 

  • Lincoln, D.E. andMooney, H.A. 1984. Herbivory onDiplcaus aurantiacus shrubs in sun and shade.Oecologia 4:173–178.

    Google Scholar 

  • Lincoln, D.E., Newton, T.S., Ehrlich, P.R., andWilliams, K.S. 1982. Coevolution of the checkerspot butterflyEuphydryas chalcedona and its larval food plantDiplacus aurantiacus: Larval response to protein and leaf resin.Oecologia 52:216–223.

    Google Scholar 

  • Louda, S.M., andRodman, I.E. 1983a. Ecological patterns in the glucosinolate content of a native mustard,Cardamine cordifolia in the Rocky Mountains.J. Chem. Ecol. 9:397–421.

    Google Scholar 

  • Louda, S.M., andRodman, I.E. 1983b. Concentration of glucosinolates in relation to habitat and insect herbivory for the native cruciferCardamine cordifolia.Biochem. Syst. Ecol. 11:199–207.

    Google Scholar 

  • McKey, D. 1979. The distribution of secondary compounds within plants, pp. 55–133,in G.A. Rosenthal andD.H. Janzen (eds.). Hervibores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • McKey, D., Waterman, P.O., Mbi, C.N., Gartlan, G.N., andStruhsaker, T.T. 1978. Phenolic content of vegetation in two African rainforests: ecological implications.Science 202:61–64.

    Google Scholar 

  • Metcalf, R.L., Metcalf, R.A., andRhodes, A.M. 1980. Cucurbitacins as kairomones for diabroticite beetles.Proc. Natl. Acad. Sci. U.S.A. 77:3769–3772.

    Google Scholar 

  • Miller, J.S., andFeeny, P. 1983. Effects of benzylisoquinoline alkaloids on the larvae of polyphagous Lepidoptera.Oecologia 58:332–339.

    Google Scholar 

  • Mooney, H.A., andChu, C. 1974. Seasonal carbon allocation inHeteromeles arbutifolia, a California evergreen shrub.Oecologia 14:295–306.

    Google Scholar 

  • Nielsen, J.K., Larsen, L.M., andSorenson, L. 1977. Cucurbitacins E and I inIberis amara: Feeding inhibitors forPhyllotreta nemorum.Photochemistry 16:1519–1522.

    Google Scholar 

  • Puttick, G.M., andBowers, M.D. 1988. The effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm.J. Chem. Ecol. 14:335–351.

    Google Scholar 

  • Rhoades, D.F. 1979. Evolution of plant chemical defense against herbivores, pp. 3–54,in G.A. Rosenthal andD.H. Janzen, (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Roby, M.R., andStermitz, F.R. 1984a. Pyrrolizidine and pyridine monoterpene alkaloids from twoCastilleja plant hosts of the plume moth,Platyptilia pica.J. Nat. Prod. 47:846–853.

    Google Scholar 

  • Roby, M.R., andStermitz, F.R. 1984b. Penstemonoside and other iridoids fromCastelleja rhexifolia: Conversion of penstemonoside to the pyridine monoterpene alkaloid rhexifoline.J. Nat. Prod. 47:853–859.

    Google Scholar 

  • Rodman, J.E., andChew, F.S. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae.Biochem. Syst. Ecol. 8:43–50.

    Google Scholar 

  • Schoonhoven, L.M., andMeerman, J. 1978. Metabolic cost of changes in diet and neutralization of allelochemics.Entomol. Exp. Appl. 24:689–693.

    Google Scholar 

  • Scriber, J.M. 1979. The effects of sequentially switching foodplants upon biomass and nitrogen utilization by polyphagous and stenophagousPapilio larvae.Entomol. Exp. Appl. 25:203–215.

    Google Scholar 

  • Scriber, J.M. 1982. The behavior and nutritional physiology of southern armyworm larvae as a function of plant species consumed in earlier instars.Entomol. Exp. Appl. 31:359–369.

    Google Scholar 

  • Sokal, R.R., andRohlf, F.J. 1969. Biometry, Freeman, San Francisco.

    Google Scholar 

  • Stadler, E., andHansom, F.E. 1978. Food discrimination and induction of preference for artificial diet in the tobacco hornworm,Manduca sexta.Physiol. Entomol. 3:121–133.

    Google Scholar 

  • Stermitz, F.S., Gardner, D.R., Odendaal, F.J., andEhrlich, P.R. 1986a.Euphydryas anicia utilization of iridoid glycosides fromCastilleja andBesseya (Scrophulariaceae) hostplants.J. Chem. Ecol. 12:1459–1468.

    Google Scholar 

  • Waldbauer, G.P. 1968. The consumption and utilization of food by insects.Recent Adv. Insect Physiol. 5:229–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deane Bowers, M., Puttick, G.M. Response of generalist and specialist insects to qualitative allelochemical variation. J Chem Ecol 14, 319–334 (1988). https://doi.org/10.1007/BF01022549

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022549

Key words

Navigation