Skip to main content
Log in

Efficacy and Mechanisms of α-Solasonine-and α-Solamargine-Induced Cytolysis on Two Strains of Trypanosoma cruzi

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Two genetically diverse strains of Trypanosoma cruzi were tested in vitro for susceptibility to the solanum-derived triglycoside alkaloids solasonine and solamargine. Cytolytic assays were performed on epimastigotes (EMs) and bloodstream form trypomastigotes (BSFs) lifecycle stages by using serial dilutions of each alkaloid. Each alkaloid effectively lysed both lifecycle stages, although solasonine routinely required higher concentrations to induce similar results. EMs demonstrated greater resistance to cytolysis than BSFs at equal concentrations of either alkaloid. No significant resistance could be correlated to parasite strain. The reported synergistic cytolytic effects observed upon compounding solasonine and solamargine together were also tested. We failed to identify any cytolytic synergism in cultures of EMs or BSFs. The role of rhamnose-binding proteins (RBPs) in mediating cytolysis was investigated through competitive inhibition experiments. The addition of exogenous l-rhamnose to the media failed to reduce parasite attrition independent of the parasite lifecycle stage. Based on these results, we suggest the mechanisms involved in cytolysis of T. cruzi by solasonine and solamargine are largely independent of rhamnose receptor-specific interactions. We propose that attrition likely involves less-specific carbohydrate interactions, which lead to the formation and intercalation of sterol complexes into the parasite plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade, S. G., Magalhães, J. B., and Pontes, A. L. 1985. Evaluation of chemotherapy with benznidazole and nifurtimox in mice infected with Trypanosoma cruzi of different type. Bull. WHO 63:721–726.

    PubMed  CAS  Google Scholar 

  • Bonjour, E. L., Fargo, W. S., Al-Obaidi, A. A., and Payton, M. E. 1993. Host effects on reproduction and adult longevity of squash bugs (Heteroptera: Coreidae). Environ. Entomol. 22:1344–1348.

    Google Scholar 

  • Bregano, J. W., Picao, R. C., Graca, V. K., Menolli, R. A., Jankevicius, S. I., Filho, P. P., and Jankevicius, J. V. 2003. Phytomonas serpens, a tomato parasite, shares antigens with Trypanosoma cruzi that are recognized by human sera and induce protective immunity in mice. FEMS Immunol. Med. Microbiol. 39:257–264.

    Article  PubMed  CAS  Google Scholar 

  • Bushway, R. J., Bureau, J. L., and King, J. 1986. Modification of the rapid high-performance liquid chromatographic method for the determination of potato glycoalkaloids. J Agric Food Chem 34:277–279.

    Article  CAS  Google Scholar 

  • Cham, B. E. and Daunter, B. 1990. Solasodine glycosides: Selective cytotoxicity for cancer cells and inhibition by rhamnose in mice with sarcoma 180. Cancer Lett. 55:221–225.

    Article  PubMed  CAS  Google Scholar 

  • Cham, B. E., Gilliver, M., and Wilson, L. 1987. Antitumour effects of glycoalkaloids isolated from Solanum sodomaeum. Planta Med. 53:34–36.

    Article  PubMed  CAS  Google Scholar 

  • Chang, L. C., Tsai, T. R., Wang, J. J., Lin, C. N., and Kuo, K. W. 1998. The rhamnose moiety of solamargine plays a critical role in triggering cell death by apoptosis. Biochem. Biophys. Res. Commun. 242:21–25.

    Article  PubMed  CAS  Google Scholar 

  • Chataing, B., Concepcion, J. L., Lobaton, R., and Usubillaga, A. 1998. Inhibition of Trypanosoma cruzi growth in vitro by Solanum alkaloids: A comparison with ketoconazole. Planta Med. 64:31–36.

    PubMed  CAS  Google Scholar 

  • Chena, M. A., Elizondo, S., Rodriquez-Paez, L., Nogeuda, B., and Wong, C. 2005. Trypanocidal activity of N-isopropyl oxamate on cultured epimastigotes and murine trypanosomiasis using different Trypanosoma cruzi strains. J. Enzyme Inhib. Med. Chem. 20:189–197.

    PubMed  CAS  Google Scholar 

  • Cipollini, M. L. 2000. Secondary metabolites of vertebrate-dispersed fruits: Evidence for adaptive functions. Rev. Chil. Hist. Nat. 73:421–440.

    Article  Google Scholar 

  • Cipollini, M. L. and Levey, D. J. 1997a. Secondary metabolites of fleshy vertebrate-dispersed fruits: Adaptive hypotheses and implications for seed dispersal. Am. Nat. 50:346–372.

    Article  Google Scholar 

  • Cipollini, M. L. and Levey, D. J. 1997b. Why are some fruits toxic? Glycoalkaloids in Solanum and fruit choice by vertebrates. Ecology 73:782–798.

    Article  Google Scholar 

  • Courtenay, O. 1994. Conservation of the Maned Wolf: fruitful relationships in a changing environment. Canid News 2:41–42.

    Google Scholar 

  • Ferguson, M. A. J. 1997. The surface glycoconjugates of trypanosomatid parasites. Philos. Trans. Biol. Sci. 352:1295–1302.

    Article  CAS  Google Scholar 

  • Fewell, A. M., Roddick, J. G., and Weissenberg, M. 1994. Interactions between glycoalkaloids solasonine and solamargine in relation to inhibition of fungal growth. Phytochemistry 37:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi, D. and Engel, M. S. 2005. Evolution of Insects. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hart, B. L. 1990. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 14:273–294.

    Article  PubMed  CAS  Google Scholar 

  • Huffman, M. A. and Caton, J. M. 2001. Self-induced gut motility and the control of parasite infections in wild chimpanzees. Int. J. Primatol. 22:329–346.

    Article  Google Scholar 

  • Kupchan, S. M., Barboutis, S. J., Knox, J. R., and Cam, C. A. 1965. Beta-solamarine: Tumor inhibitor isolated from Solanum dulca. Science 150:1827–1828.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, W. H., Lamas, G., Vaisberg, A., Corley, D. G., and Sarasara, C. 1999. Peruvian medicinal plant sources of new pharmaceuticals. Pharm. Biol. 37, (Supplement 1):69–83.

    Google Scholar 

  • Powell, M. R. and Kuhn, R. E. 1980. Measurement of cytolytic antibody in experimental Chagas disease using a terminal radiolabeling procedure. J Parasitol 66:399–406.

    Article  PubMed  CAS  Google Scholar 

  • Revollo, S., Oury, B., Laurent, J.-P., Barnabé, C., Quesney, V., Carrière, V., Noel, S., and Tibayrenc, M. 1998. Trypanosoma cruzi: Impact of clonal evolution of the parasite on its biological and medical properties. Exp. Parasitol. 89:30–39.

    Article  PubMed  CAS  Google Scholar 

  • Ripperger, H. 1995. Steroid alkaloid glycosides from Solanum robustum. Phytochemisty 39:1475–1477.

    Article  CAS  Google Scholar 

  • Roddick, J. G., Rijnenberg, A. L., and Weissenberg, M. 1990. Membrane-disrupting properties of the steroidal glycoalkaloids solasonine and solamargine. Phytochemistry 29:1513–1518.

    Article  CAS  Google Scholar 

  • Roddick, J. G., Rijnenberg, A. L., and Weissenberg, M. 1992. Alterations to the permeability of liposome membranes by the solasodine-based glycoalkaloids solasonine and solamargine. Phytochemistry 31:1951–1954.

    Article  CAS  Google Scholar 

  • Roddick, J. G., WReissenberg, M., and Leonard, A. L. 2001. Membrane disruption and enzyme inhibition by naturally-occurring and modified chacotriose-containing Solanum steroidal glycoalkaloids. Phytochemistry 56:603–610.

    Article  PubMed  CAS  Google Scholar 

  • Scott, D. A., De Sousa, W., Benchimol, M., Zhong, L., Lu, H. G., Moreno, S. N., and Docampo, R. 1998. Presence of a plant-like pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. J. Biol. Chem. 273:22151–22158.

    Article  PubMed  CAS  Google Scholar 

  • Udalova, Z. V., Zinov’eva, S. V., Vasil’eva, I. S., and Paseshnichenko, V. A. 2004. Correlation between the structure of plant steroids and their effects on phytoparasitic nematodes. Appl. Biochem. Microbiol. 40:93–97.

    Article  CAS  Google Scholar 

  • Vitazkova, S., Long, E., and Glendinning, J. 2001. Mice suppress malaria infection by sampling a bitter chemotherapy agent. Anim. Behav. 61:887–894.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Faculty Development Grant program and the Office of the Provost at Berry College for financial support, Ashley Wimsett, Brad Meers, and Emily Pierce of Berry College for technical assistance, and Andrea Hall for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, C.A., Hobby, T. & Cipollini, M. Efficacy and Mechanisms of α-Solasonine-and α-Solamargine-Induced Cytolysis on Two Strains of Trypanosoma cruzi . J Chem Ecol 32, 2405–2416 (2006). https://doi.org/10.1007/s10886-006-9153-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9153-5

Keywords

Navigation