Skip to main content
Log in

Tannin Composition Affects the Oxidative Activities of Tree Leaves

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We examined whether tannin composition plays an important role in explaining the oxidative activities of tree leaves of Acer saccharum (sugar maple) and Quercus rubra (red oak). Sugar maple leaves contained substantial amounts of ellagitannins, condensed tannins, and galloyl glucoses, whereas red oak leaves contained almost exclusively condensed tannins. Oxidative activities of the crude phenolics from both species, and the phenolic fractions from sugar maple, were measured with electron paramagnetic resonance (EPR) spectrometry and UV-visible spectrophotometry. The two assays produced similar results: (1) sugar maple phenolics produced larger semiquinone radical concentrations,and higher semiquinone decay rates and browning rates than did red oak phenolics;(2) ellagitannin levels were positively associated with the three measures of oxidative activity; and (3) condensed tannin and galloyl glucose levels were negatively associated with these measures. The negative relationship between condensed tannin levels and oxidative activity resulted from the antioxidant effects of condensed tannins on hydrolyzable tannins; several purified condensed tannins significantly decreased the concentrations of semiquinone radicals and browning rates of pedunculagin (an ellagitannin) and pentagalloyl glucose. As expected, whole-leaf extracts from sugar maple produced elevated levels of semiquinone radicals, but none were observed in red oak extracts when the two species were compared with an EPR time-course assay. We conclude that the oxidative activities of tree leaves may be affected by tannin composition, and that the prooxidant activity of ellagitannins may be decreased by co-occurring condensed tannins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Appel, H. M. 1993. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol. 19:1521–1552.

    Article  CAS  Google Scholar 

  • Ayres, M. P., Clausen, T. P., MacLean, S. F. Jr., Redman, A. M., and Reichardt, P. B. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712.

    Article  Google Scholar 

  • Baldwin, I. T., Schultz, J. C., and Ward, D. 1987. Patterns and sources of leaf tannin variation in yellow birch (Betula allegheniensis) and sugar maple (Acer saccharum). J. Chem. Ecol. 13:1069–1078.

    Article  CAS  Google Scholar 

  • Barbehenn, R. V., Bumgarner, S. L., Roosen, E., and Martin, M. M. 2001. Antioxidant defenses in caterpillars: Role of the ascorbate recycling system in the midgut lumen. J. Insect Physiol. 47:349–357.

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn, R. V., Poopat, U., and Spencer, B. 2003a. Semiquinone and ascorbyl radicals in the gut fluids of caterpillars measured with EPR spectrometry. Insect Biochem. Mol. Biol. 33:125–130.

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn, R. V., Walker, A. C., and Uddin, F. 2003b. Antioxidants in the midgut fluids of a tannin-tolerant and a tannin-sensitive caterpillar: Effects of seasonal changes in tree leaves. J. Chem. Ecol. 29:1099–1116.

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn, R. V., Cheek, S., Gasperut, A., Lister, E., and Maben, R. 2005. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midguts of Malacosoma disstria and Orgyia leucostigma caterpillars. J. Chem. Ecol. 31:969–988.

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn, R. V., Jones, C. P., Hagerman, A. E., Karonen, M., and Salminen, J.-P. 2006. Ellagitannins have larger oxidative activities than condensed tannins and galloyl glucoses at high pH: Potential impact on caterpillars. J. Chem. Ecol. (this issue).

  • Bi, J. L. and Felton, G. W. 1995. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 21:1511–1530.

    Article  CAS  Google Scholar 

  • Bi, J. L. and Felton, G. W. 1997. Antinutritive and oxidative components as mechanisms of induced resistance in cotton. J. Chem. Ecol. 23:97–117.

    Article  CAS  Google Scholar 

  • Cao, G., Sofic, E., and Prior, R. L. 1997. Antioxidant and prooxidant behavior of flavonoids: Structure–activity relationships. Free Radic. Biol. Med. 22:749–760.

    Article  PubMed  CAS  Google Scholar 

  • Felton, G. W. and Duffey, S. S. 1992. Ascorbate oxidation reduction in Helicoverpa zea as a scavenging system against dietary oxidants. Arch. Insect Biochem. Physiol. 19:27–37.

    Article  CAS  Google Scholar 

  • Grace, S. C., Yamasaki, H., and Pryor, W. A. 1999. Spin stabilizing approach to radical characterization of phenylpropanoid antioxidants: An ESR study of chlorogenic acid oxidation in the horseradish peroxidase, tyrosinase, and ferrylmyoglobin protein radical systems, pp. 435–450, in G. G. Gross, R. W. Hemingway, T. Yoshida, and S. J. Branham (eds.). Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Guo, G., Zhao, B., Shen, S., Hou, J., Hu, J., and Xin, W. 1999. ESR study on the structure–antioxidant activity relationship of tea catechins and their epimers. Biochim. Biophys. Acta 1427:13–23.

    PubMed  CAS  Google Scholar 

  • Haddock, E. A., Gupta, R. K., Al-Shafi, S. M. K., Layden, K., Haslam, E., and Magnolato, D. 1982. The metabolism of gallic acid and hexahydroxydiphenic acid in plants: Biogenetic and molecular taxonomic considerations. Phytochemistry 21:1049–1062.

    Article  CAS  Google Scholar 

  • Haslam, E. 1989. Plant Polyphenols. Vegetable Tannins Revisited. Cambridge University Press, Cambridge. p. 230.

    Google Scholar 

  • Hemming, J. D. C. and Lindroth, R. L. 1995. Intraspecific variation in aspen phytochemistry: Effects on performance of gypsy moths and forest tent caterpillars. Oecologia 103:79–88.

    Article  Google Scholar 

  • Hoover, K., Kishida, K. T., DiGiorgio, L. A., Workman, J., Alaniz, S. A., Hammock, B. D., and Duffey, S. S. 1998. Inhibition of baculoviral disease by plant-mediated peroxidase activity and free radical generation. J. Chem. Ecol. 24:1949–2001.

    Article  CAS  Google Scholar 

  • Johnson, K. S. and Barbehenn, R. V. 2000. Oxygen levels in the gut lumens of herbivorous insects. J. Insect Physiol. 46:897–903.

    Article  PubMed  CAS  Google Scholar 

  • Kähkönen, M. P. and Heinonen, M. 2003. Antioxidant activity of anthocyanins and their aglycones. J. Agric. Food Chem. 51:628–633.

    Article  PubMed  CAS  Google Scholar 

  • Kinney, K. K., Lindroth, R. L., Jung, S. M., and Nordheim, E. V. 1997. Effects of CO2 and NO3 availability on deciduous trees: Phytochemistry and inset performance. Ecology 78:215–230.

    Article  Google Scholar 

  • Kopper, B. J., Jakobi, V. N., Osier, T. L., and Lindroth, R. L. 2002. Effects of paper birch condensed tannin on whitemarked tussock moth (Lepidoptera: Lymantriidae) performance. Environ. Entomol. 31:10–14.

    Article  CAS  Google Scholar 

  • Mueller-Harvey, I. 2001. Analysis of hydrolysable tannins. Anim. Feed Sci. Tech. 91:3–20.

    Article  CAS  Google Scholar 

  • Okuda, T. 1999a. Novel aspects of tannins—renewed concepts and structure–activity relationships. Curr. Org. Chem. 3:609–622.

    CAS  Google Scholar 

  • Okuda, T. 1999b. Antioxidants in herbs: Polyphenols, pp. 393–410, in L. Packer and M. Hiramatsu (eds.). Antioxidant Food Supplements in Human Health. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Osier, T. L., Hwang, S.-Y., and Lindroth, R. L. 2000. Effects of phytochemical variation in quaking aspen Populus tremuloides clones on gypsy moth Lymantria dispar performance in the field and laboratory. Ecol. Entomol. 25:197–207.

    Article  Google Scholar 

  • Ossipov, V., Haukioja, E., Ossipova, S., Hanhimäki, S., and Pihlaja, K. 2001. Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochem. Syst. Ecol. 29:223–240.

    Article  PubMed  CAS  Google Scholar 

  • Ossipova, S., Ossipov, V., Haukioja, E., Loponen, J., and Pihlaja, K. 2001. Proanthocyanidins of mountain birch leaves: Quantification and properties. Phytochem. Anal. 12:128–133.

    Article  PubMed  CAS  Google Scholar 

  • Richard-Forget, F. C. and Gauillard, F. A. 1997. Oxidation of chlorogenic acid, catechins, and 4-methylcatechol in model solutions by combinations of pear (Pyrus communis Cv. Williams) polyphenol oxidase and peroxidase: A possible involvement of peroxidase in enzymatic browning. J. Agric. Food Chem. 45:2472–2476.

    Article  CAS  Google Scholar 

  • Rossiter, M., Schultz, J. C., and Baldwin, I. T. 1988. Relationship among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology 69:267–277.

    Article  CAS  Google Scholar 

  • Salminen, J.-P., Ossipov, V., Loponen, J., Haukioja, E., and Pihlaja, K. 1999. Characterisation of hydrolyzable tannins from leaves of Betula pubescens by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 864:283–291.

    Article  CAS  Google Scholar 

  • Salminen, J.-P., Roslin, T., Karonen, M., Sinkkonen, J., Pihlaja, K., and Pulkkinen, P. 2004. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. J. Chem. Ecol. 30:1675–1693.

    Article  Google Scholar 

  • SAS Institute. 2000. The SAS System for Windows. Version 8e. SAS Institute, Cary, NC, USA.

    Google Scholar 

  • Summers, C. B. and Felton, G. W. 1994. Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): Potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem. Mol. Biol. 24:943–953.

    Article  CAS  Google Scholar 

  • Swain, T. 1979. Tannins and lignins, pp. 657–682, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Wilkinson, L. 2000. SYSTAT: The System for Statistics. SYSTAT, Inc., Evanston, IL, USA.

    Google Scholar 

  • Williamson, G., Plumb, G. W., and Garcia-Conesa, M. T. 1999. Glycosylation, esterification and polymerization of flavonoids and hydroxycinnamates: Effects on antioxidant properties, pp. 483–494, in G. G. Gross, R. W. Hemingway, T. Yoshida, and S. J. Branham (eds.). Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Yamasaki, H. and Grace, S. C. 1998. EPR detection of phytophenoxyl radicals stabilized by zinc ions: Evidence for the redox coupling of plant phenolics with ascorbate in the H2O2-peroxidase system. FEBS Lett. 422:377–380.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service grant number 2004-35302-14940 to R. Barbehenn and C. P. Constabel. Support for J.-P. Salminen and Maarit Karonen was provided by grants 204209 and 201073 from the Academy of Finland, respectively. Jonna Kenttä, Riitta Koivikko, Jaana Liimatainen, Tuuli Luomahaara, Angelica Preetz, and Victor Turhanen assisted with the isolation of tannins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond V. Barbehenn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbehenn, R.V., Jones, C.P., Karonen, M. et al. Tannin Composition Affects the Oxidative Activities of Tree Leaves. J Chem Ecol 32, 2235–2251 (2006). https://doi.org/10.1007/s10886-006-9142-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9142-8

Keywords

Navigation