Skip to main content
Log in

Identification of Phytotoxic Substances from Early Growth of Barnyard Grass (Echinochloa crusgalli) Root Exudates

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Barnyard grass is a problematic weed worldwide. It competes with crops and causes reduction in crop yields. In this study, barnyard grass suppressed rice emergence, and the degree of rice inhibition was proportional to the density of barnyard grass. Root exudates of barnyard grass reduced germination and growth of lettuce, rice, and monochoria. Fifteen compounds potentially involved in the phytotoxic activities of barnyard grass were isolated and identified, including phenolics, long-chain fatty acids, lactones, diethyl phthalate, acenaphthene, and derivatives of phthalic acids, benzoic acid, and decane. Quantities of diethyl phthalate, decanoic acid, myristic acid, stearic acid, 7,8-dihydro-5,6-dehydrokavain, and 7,8-dihydrokavain were 2.7, 11.1, 19.6, 35.5, 10.3, and 15.5 μg/ml of barnyard grass root exudates, respectively. The two lactones exhibited the greatest inhibition, followed by the phenolics and the derivatives of phthalic acids. Fatty acids had stronger suppression than diethyl phthalate and ethyl ester-4-ethoxy-benzoic acid. The acenaphthene and decane derivatives were the least phytotoxic. The phytotoxins released by barnyard grass roots showed strong inhibition on growth of broadleaf indicator plants and paddy weeds, but were less effective on barnyard grass itself and rice. Our study revealed that in addition to competition, barnyard grass also interferes with rice and other plants in its surroundings by chemical means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., and Vivanco. 2003. Allelopathy and exotic plants: from genes to invasion. Science 301:1377–1380.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W. L., and Sung, H. H. 2005. The toxic effects of phthalate esters on immune responses of giant freshwater prawn (Macrobrachium rosenbergii) via oral treatment. Aquat. Toxicol. 74:160–171.

    Article  PubMed  CAS  Google Scholar 

  • Chin, D. V. 2001. Biological management of barnyardgrass, red sprangletop and weedy rice. Weed Biol. Manag. 1:37–41.

    Article  Google Scholar 

  • Chung, I. M., Kim, K. H., Ahn, J. K., Lee, S. B., Kim, S. H., and Hahn, S. J. 2003. Comparison of allelopathic potential of rice leaves, straw and hull extracts on barnyardgrass. Agron. J. 95:1063–1070.

    Google Scholar 

  • Elzaawely, A. A., Xuan, T. D., and Tawata, S. 2006. Changes in essential oil, kava pyrones and total phenolics of Alpinia zerumbet (Pers.) B. L. Burtt. & R. M. Sm. Leaves exposed to copper sulphate. Environ. Exp. Bot. (in press).

  • Herring, H. and Bering, C. L. 1988. Effects of phthalate esters on plant seedlings and reversal by a soil microorganism. Bull. Environ. Contam. Toxicol. 40:626–632.

    Article  PubMed  CAS  Google Scholar 

  • Holm, G. L., Plucknett, D. L., Pancho, J. V., and Herber, J. P. 1991. The world's worst weeds—Distribution and ecology. Krieger Publishing Company, Malabar, FL, USA. pp. 32, 341, p 609.

  • Hu, X. Y., Wen, B., Zhang, S. Z., and Shan, X. Q. 2005. Bioavailability of phthalate congeners to earthworms (Eisenia fetida) in artificially contaminated soils. Ecotoxicol. Environ. Saf. 62:26–31.

    Article  PubMed  CAS  Google Scholar 

  • Jonsson, S., and Baun, A. 2003. Toxicity of mono- and diesters of o-phthalic esters to a crustacean, a green alga, and a bacterium. Environ. Toxicol. Chem. 22:3037–3043.

    Article  PubMed  CAS  Google Scholar 

  • Jung, W. S., Kim, K. H., Ahn, J. K., Hahn, S. J., and Chung, I. M. 2004. Allelopathic potential of rice (Oryza sativa L.) residues against Echinochloa crus-galli. Crop Prot. 23:211–218.

    Article  Google Scholar 

  • Keire, D. A., Anton, P., Faull, K. F., Ruth, E., Walsh, J., Chew, P., Quisimoro, D., Territo, M., and Reeve, Jr. J. R. 2001. Diethyl phthalate, a chemotactic factor secreted by Helicobacter pylori. J. Biol. Chem. 276:48847–48853.

    Article  PubMed  CAS  Google Scholar 

  • Khanh, T. D., Chung, I. M., Xuan, T. D., and Tawata, S. 2005. The exploitation of crop allelopathy in sustainable agricultural production. J. Agron. Crop Sci. 191:172–184.

    Google Scholar 

  • Qasem, J. R., and Foy, C. L. 2001. Weed allelopathy, its ecological impacts and future prospects: a review. J. Crop Prod. 4:43–119.

    Article  CAS  Google Scholar 

  • Rimando, A. M., Olofsdotter, M., Dayan, F. E., and Duke, S. O. 2001. Searching for rice allelochemicals: an example of bioassay-guided isolation. Agron. J. 93:6–20.

    Google Scholar 

  • Saarma, K., Tarkka, M. T., Itavaara, M., and Fagerstedt, K. 2003. Heat shock protein synthesis is induced by diethyl phthalate but not by di(2-ethylhexyl) phthalate in radish (Raphanus sativus). J. Plant Physiol. 160:1001–1010.

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute, 1997: SAS/STAT User's Guide, ver. 6.12. SAS Institute, Cary, NC.

  • Staples, C. A., Asams, W. J., Parkerton, T. F., Gorsuch, J. W., Biddinger, G. R., and Reinert, K. H. 1997. Aquatic toxicity of eighteen phthalate esters. Environ. Toxicol. Chem. 16:875–891.

    Article  CAS  Google Scholar 

  • Sung, H. H., Kao, W. Y., and Su, Y. J. 2003. Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn (Macrobranchium rosenbergii). Aquat. Toxicol. 64:25–37.

    Article  PubMed  CAS  Google Scholar 

  • Tang, C. S., and Young, C. C. 1982. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol. 69:155–160.

    Article  PubMed  CAS  Google Scholar 

  • Xuan, T. D., Tsuzuki, E., Uematsu, H., and Terao, H. 2001. Weed control with alfalfa pellets in transplanting rice. Weed Biol. Manag. 1:231–235.

    Article  CAS  Google Scholar 

  • Xuan, T. D., Tsuzuki, E., Uematsu, H., and Terao, H. 2002. Effects of alfalfa (Medicago sativa L.) pellets on weed control in rice. Allelopathy J. 9:195–203.

    Google Scholar 

  • Xuan, T. D., Tsuzuki, E., Terao, H., Matsuo, M., Khanh, T. D., Murayama, S., and Hong, N. H. 2003. Alfalfa, rice by-products, and their incorporations for weed control in rice. Weed Biol. Manag. 3:137–144.

    Article  Google Scholar 

  • Xuan, T. D., Tsuzuki, E., Tawata, S., and Khanh, T. D. 2004. Methods to determine allelopathic potential of crop plants for weed control. Allelopathy J. 13:149–169.

    Google Scholar 

  • Yamamoto, T., Yokotani-Tomita, K., Kosemura, S., Yamamura, S., Yamada, K., and Hasegawa, K. 1999. Allelopathic substance exuded from a serious weed, germinating barnyardgrass (Echinochloa crus-galli L.) roots. J. Plant Growth Regul. 18:65–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Japan Society for the Promotion of Science (JSPS) for providing Dr. Tran Dang Xuan a Postdoctoral Fellowship (P04461). They also thank Dr. Alexa Seal for her useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to III Min Chung.

Additional information

T. D. Khanh and I. M. Chung are members of the research team of Friendly Environmental Low Input Natural Herbicide New Material Study of the Konkuk University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuan, T.D., Chung, I.M., Khanh, T.D. et al. Identification of Phytotoxic Substances from Early Growth of Barnyard Grass (Echinochloa crusgalli) Root Exudates. J Chem Ecol 32, 895–906 (2006). https://doi.org/10.1007/s10886-006-9035-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9035-x

Keywords

Navigation