Skip to main content
Log in

A KAM Theorem for the Time Quasi-periodic Reversible Perturbations of Linear Wave Equations Beyond Brjuno Conditions

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the existence of quasi-periodic response solutions (i.e., solutions that are quasi-periodic with the same frequencies as forcing term) for a class of forced reversible wave equations with derivative nonlinearity. The forcing frequency \(\omega \in \mathbb {R}^2\) would be Liouvillean which is weaker than the usual Diophantine and Brjuno conditions. The derivative nonlinearity in the equation also leads to some difficulty in measure estimate. To overcome it, we also use the Töplitz–Lipschitz property of vector field. The proof is based on an infinite dimensional Kolmogorov–Arnold–Moser theorem for reversible systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Notice that z and \(\bar{z}\) are independent complex variables.

References

  1. Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for \({\rm SL}(2,\mathbb{R} )\) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21(5), 1001–1019 (2011)

    Article  MathSciNet  Google Scholar 

  2. Baldi, P., Berti, M., Haus, E., Montalto, R.: Time quasi-periodic gravity water waves in finite depth. Invent. Math. 214(2), 739–911 (2018)

    Article  MathSciNet  Google Scholar 

  3. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359(1–2), 471–536 (2014)

    Article  MathSciNet  Google Scholar 

  4. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris 352(7–8), 603–607 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bambusi, D.: On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity 12(4), 823–850 (1999)

    Article  MathSciNet  Google Scholar 

  6. Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, II. Commun. Math. Phys. 353(1), 353–378 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I. Trans. Am. Math. Soc. 370(3), 1823–1865 (2018)

    Article  Google Scholar 

  8. Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Commun. Math. Phys. 219(2), 465–480 (2001)

    Article  Google Scholar 

  9. Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Reducibility of the quantum harmonic oscillator in \(d\)-dimensions with polynomial time-dependent perturbation. Anal. PDE 11(3), 775–799 (2018)

    Article  MathSciNet  Google Scholar 

  10. Berti, M., Biasco, L., Procesi, M.: KAM theory for the Hamiltonian derivative wave equation. Ann. Sci. Éc. Norm. Supér. (4) 46(2), 301–373 (2013)

    Article  MathSciNet  Google Scholar 

  11. Berti, M., Biasco, L., Procesi, M.: KAM for reversible derivative wave equations. Arch. Ration. Mech. Anal. 212(3), 905–955 (2014)

    Article  MathSciNet  Google Scholar 

  12. Berti, M., Bolle, P.: Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25(9), 2579–2613 (2012)

    Article  MathSciNet  Google Scholar 

  13. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \(\mathbb{T} ^d\) with a multiplicative potential. J. Eur. Math. Soc. (JEMS) 15(1), 229–286 (2013)

    Article  MathSciNet  Google Scholar 

  14. Berti, M., Montalto, R.: Quasi-periodic water waves. J. Fixed Point Theory Appl. 19(1), 129–156 (2017)

    Article  MathSciNet  Google Scholar 

  15. Berti, M., Procesi, M.: Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16(2), 109–116 (2005)

    MathSciNet  Google Scholar 

  16. Berti, M., Procesi, M.: Quasi-periodic solutions of completely resonant forced wave equations. Commun. Partial Differ. Equ. 31(4–6), 959–985 (2006)

    Article  MathSciNet  Google Scholar 

  17. Berti, M., Procesi, M.: Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Math. J. 159(3), 479–538 (2011)

    Article  MathSciNet  Google Scholar 

  18. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. (2) 148(2), 363–439 (1998)

    Article  MathSciNet  Google Scholar 

  19. Bourgain, J.: Periodic solutions of nonlinear wave equations. In: Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996), Chicago Lectures in Mathematics, pp. 69–97. Univ. Chicago Press, Chicago (1999)

  20. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)

    Google Scholar 

  21. Calleja, R., Celletti, A., Corsi, L., de la Llave, R.: Response solutions for quasi-periodically forced, dissipative wave equations. SIAM J. Math. Anal. 49(4), 3161–3207 (2017)

    Article  MathSciNet  Google Scholar 

  22. Chang, N., Geng, J., Lou, Z.: Bounded non-response solutions with Liouvillean forced frequencies for nonlinear wave equations. J. Dyn. Differ. Equ. 33(4), 2009–2046 (2021)

    Article  MathSciNet  Google Scholar 

  23. Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211(2), 497–525 (2000)

    Article  MathSciNet  Google Scholar 

  24. Craig, W.: Problèmes de petits diviseurs dans les équations aux dérivées partielles. Panoramas et Synthèses [Panoramas and Syntheses], vol. 9. Société Mathématique de France, Paris (2000)

  25. Craig, W., Wayne, C.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46(11), 1409–1498 (1993)

    Article  MathSciNet  Google Scholar 

  26. Eliasson, L., Kuksin, S.: KAM for the nonlinear Schrödinger equation. Ann. Math. (2) 172(1), 371–435 (2010)

    Article  MathSciNet  Google Scholar 

  27. Feola, R., Procesi, M.: Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations. J. Differ. Equ. 259(7), 3389–3447 (2015)

    Article  Google Scholar 

  28. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226(6), 5361–5402 (2011)

    Article  MathSciNet  Google Scholar 

  29. Geng, J., You, J.: A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions. J. Differ. Equ. 209(1), 1–56 (2005)

    Article  Google Scholar 

  30. Grébert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Commun. Math. Phys. 307(2), 383–427 (2011)

    Article  MathSciNet  Google Scholar 

  31. Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190(1), 209–260 (2012)

    Article  MathSciNet  Google Scholar 

  32. Kappeler, T., Pöschel, J.: KdV & KAM, volume 45 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin (2003)

  33. Krikorian, R., Wang, J., You, J., Zhou, Q.: Linearization of quasiperiodically forced circle flows beyond Brjuno condition. Commun. Math. Phys. 358(1), 81–100 (2018)

    Article  MathSciNet  Google Scholar 

  34. Kuksin, S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i. Prilozhen. 21(3), 22–37 (1987)

    Article  MathSciNet  Google Scholar 

  35. Kuksin, S.: On small-denominators equations with large variable coefficients. Z. Angew. Math. Phys. 48(2), 262–271 (1997)

    Article  MathSciNet  Google Scholar 

  36. Kuksin, S.: A KAM-theorem for equations of the Korteweg–de Vries type. Rev. Math. Math. Phys. 10(3), ii+64 (1998)

    MathSciNet  Google Scholar 

  37. Kuksin, S., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. (2) 143(1), 149–179 (1996)

    Article  MathSciNet  Google Scholar 

  38. Liu, J., Yuan, X.: A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Commun. Math. Phys. 307(3), 629–673 (2011)

    Article  MathSciNet  Google Scholar 

  39. Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies. J. Differ. Equ. 263(7), 3894–3927 (2017)

    Article  MathSciNet  Google Scholar 

  40. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)

    Article  MathSciNet  Google Scholar 

  41. Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(1), 119–148 (1996)

    MathSciNet  Google Scholar 

  42. Procesi, M., Xu, X.: Quasi-Töplitz functions in KAM theorem. SIAM J. Math. Anal. 45(4), 2148–2181 (2013)

    Article  MathSciNet  Google Scholar 

  43. Rabinowitz, P.: Periodic solutions of nonlinear hyperbolic partial differential equations. Commun. Pure Appl. Math. 20, 145–205 (1967)

    Article  MathSciNet  Google Scholar 

  44. Rabinowitz, P.: Periodic solutions of nonlinear hyperbolic partial differential equations, II. Commun. Pure Appl. Math. 22, 15–39 (1968)

    Article  MathSciNet  Google Scholar 

  45. Rabinowitz, P.: Time periodic solutions of nonlinear wave equations. Manuscr. Math. 5, 165–194 (1971)

    Article  MathSciNet  Google Scholar 

  46. Rabinowitz, P.: Free vibrations for a semilinear wave equation. Commun. Pure Appl. Math. 31(1), 31–68 (1978)

    Article  MathSciNet  Google Scholar 

  47. Wang, J., You, J.: Boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequency. J. Differ. Equ. 261(2), 1068–1098 (2016)

    Article  MathSciNet  Google Scholar 

  48. Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans. Am. Math. Soc. 369(6), 4251–4274 (2017)

    Article  MathSciNet  Google Scholar 

  49. Wang, W.: Energy supercritical nonlinear Schrödinger equations: quasiperiodic solutions. Duke Math. J. 165(6), 1129–1192 (2016)

    Article  MathSciNet  Google Scholar 

  50. Wang, W.: Quasi-periodic solutions for nonlinear Klein–Gordon equations. arXiv:1609.00309 (2017)

  51. Wayne, C.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127(3), 479–528 (1990)

    Article  MathSciNet  Google Scholar 

  52. Xu, X., You, J., Zhou, Q.: Quasi-periodic solutions of NLS with Liouvillean frequency. arxiv preprint arXiv:1707.04048 (2017)

  53. Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24(4), 1189–1228 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11971012). Z. Lou was supported by NSFC (Grant No. 11901291) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190395). The authors are very grateful to the referee for his/her invaluable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaowei Lou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix.  Proofs of Some Technical Lemmas

Appendix.  Proofs of Some Technical Lemmas

1.1 Proof of Inequality (5.25) in Proposition 5.1

Proof

Below to estimate \(\Vert A^{-1}_{ij}\Vert _{\mathcal {O}}\), we first estimate

$$\begin{aligned} \frac{|\frac{\partial }{\partial \xi }(\Omega _{ij}+[B_{ij}])|}{(\langle k, \omega \rangle -(\Omega _{ij}+[B_{ij}])^2}. \end{aligned}$$

For \(i\ne j,\) on one hand, since \(\Omega _{j}(\xi )=d(\xi )j+\widetilde{\Omega }_{j}(\xi ),\)

$$\begin{aligned}{} & {} |\partial _\xi \Omega _{ij}|= |\partial _\xi d(i-j)+\partial _\xi (\widetilde{\Omega }_{i}-\widetilde{\Omega }_{j})|\le (A_2+2|\widetilde{\Omega }|_{\mathcal {O}})|i-j|.\\{} & {} |\partial _\xi [B_{ij}]| \le 2\Vert B\Vert _{\infty ,D(r)\times \mathcal {O}} \le 2\zeta |i-j|. \end{aligned}$$

Then

$$\begin{aligned} |\partial _\xi (\Omega _{ij}+[B_{ij}])|\le (A_2+\frac{3A_1}{4})|i-j|. \end{aligned}$$

On the other hand,

$$\begin{aligned} |\partial _\xi (\Omega _{ij}+[B_{ij}])|\ge |\partial _\xi \Omega _{ij}|-|\partial _\xi [B_{ij}]| \ge \frac{A_1}{4}|i-j|, \end{aligned}$$

thus

$$\begin{aligned} \frac{A_1}{4}|i-j|\le |\partial _\xi (\Omega _{ij}+[B_{ij}])|\le (A_2+\frac{3A_1}{4})|i-j|. \end{aligned}$$

Note that

$$\begin{aligned} \begin{aligned} |\langle k,\omega \rangle -(\Omega _{ij}+[B_{ij}])|&\ge |\Omega _{ij}|-|[B_{ij}]|-|\langle k,\omega \rangle |\\&\ge (A_0-\frac{3A_1}{4})|i-j|-K. \end{aligned} \end{aligned}$$

Then when \(|i-j|> \mathcal {C}K,\)

$$\begin{aligned} \frac{|\partial _\xi (\Omega _{ij}+[B_{ij}])}{(\langle k, \omega \rangle -(\Omega _{ij}+[B_{ij}]))^2} \le \frac{(A_2+\frac{3A_1}{4})}{\mathcal {C}K}. \end{aligned}$$

When \(|i-j|\le \mathcal {C}K,\) due to \(\Omega (\xi )+[B]\in \mathcal{M}\mathcal{C}_\omega (\gamma , \tau , K, \mathcal {O}),\)

$$\begin{aligned} \frac{|\partial _\xi (\Omega _{ij}+[B_{ij}])}{(\langle k, \omega \rangle -(\Omega _{ij}+[B_{ij}]))^2} \le \frac{(A_2+\frac{3A_1}{4})\mathcal {C}K^{2\tau +1}}{\gamma ^{2}}. \end{aligned}$$

Then for all \(i\ne j,\)

$$\begin{aligned} \frac{|\partial _\xi (\Omega _{ij}+[B_{ij}])|}{(\langle k, \omega \rangle -(\Omega _{ij}+[B_{ij}]))^2}\le \frac{(A_2+\frac{3A_1}{4})\mathcal {C}K^{2\tau +1}}{\gamma ^{2}}. \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned}&\Vert A^{-1}_{ij}\Vert _{\mathcal {O}}\\&\quad =\max \limits _{|k|\le K}\sup \limits _{\xi \in \mathcal {O}}\left( \frac{1}{|\langle k, \omega \rangle -(\Omega _{ij}(\xi )+[B_{ij}(\theta )])|}+\frac{|\frac{\partial }{\partial \xi }(\Omega _{ij}+[B_{ij}])|}{(\langle k, \omega \rangle -(\Omega _{ij}+[B_{ij}])^2}\right) \\&\quad \le \frac{(1+A_2+\frac{3A_1}{4})\mathcal {C}K^{2\tau +1}}{\gamma ^{2}} =:\frac{C_0K^{2\tau +1}}{\gamma ^{2}}. \end{aligned} \end{aligned}$$

\(\square \)

1.2 Proof of Lemma 6.1

Proof

  1. (1)

    In fact, by Lemma 3.1, one has \(Q_{n+1}\ge Q_{n}^{\mathcal {A}}.\)

    $$\begin{aligned}{} & {} \tilde{r}_{m}\le \tilde{r}_{0}=2r_{+},\\{} & {} (r-\tilde{r}_{m})^3\ge (r-2r_{+})^3\ge (\frac{r_{0}}{8Q_{n}^{4}})^3, \end{aligned}$$

    and

    $$\begin{aligned} \begin{aligned} \frac{360\tilde{r}_{m}Q_{n+1}\zeta }{(r-\tilde{r}_{m})^3}&\le 360\tilde{r}_{m}Q_{n+1}\zeta (\frac{8Q_{n}^{4}}{r_0})^3\\&\le 360\frac{2r_0}{4Q_{n+1}^{4}}Q_{n+1}2\varepsilon _{0}^{\frac{1}{2}} \frac{512Q_{n}^{12}}{r_{0}^{3}}\\&=C\frac{Q_{n}^{12}\varepsilon _{0}^{\frac{1}{2}}}{Q_{n+1}^{3}r_{0}^{2}} \le 1. \end{aligned} \end{aligned}$$
    (9.1)

    Thus we have our conclusion \(360\tilde{r}_{m}Q_{n+1}\zeta \le (r-\tilde{r}_{m})^3\).

  2. (2)

    From Lemma 3.1, we have \(Q_{n+1}\ge Q_{n}^{\mathcal {A}}\) and \(\ln Q_{n+1}\le Q^U_n.\) Using these and (6.7),

    $$\begin{aligned} \frac{256}{(r-\tilde{r}_m)^2}\textrm{e}^{-\frac{r-\tilde{r}_m}{2}Q_{n+1}}\zeta\le & {} 256(\frac{8Q_{n}^{4}}{r_0})^{2} \textrm{e}^{-\frac{r-\tilde{r}_m}{2}Q_{n+1}}2\varepsilon _{0}^{\frac{1}{2}},\\ \frac{256\cdot 64\cdot 2}{r_{0}^{2}}\varepsilon _{0}^{\frac{1}{2}}\le & {} \frac{1}{2},\\ Q_{n}^{8}\textrm{e}^{-(r-\tilde{r}_m)Q_{n+1}}\le & {} \textrm{e}^{-\frac{r_0}{8Q_{n}^{4}}Q_{n+1}}Q_{n}^{8} \le \textrm{e}^{-\frac{Q_{n+1}}{Q_{n}^{5}}}Q_{n}^{8}\\\le & {} \textrm{e}^{-\frac{Q_{n+1}^{\frac{1}{2}}\ln Q_{n+1}}{Q_{n}^{5}}}\textrm{e}^{Q_{n}\ln Q_{n+1}} \le \textrm{e}^{-\ln Q_{n+1}(Q_{n}^{\frac{\mathcal {A}}{2}-5}-Q_{n})}\\\le & {} \textrm{e}^{-(\ln Q_{n+1})Q_{n}^{\frac{\mathcal {A}}{2}-5-1}} \le Q_{n+1}^{-(n+2-n_{0})2^{n+2-n_{0}}c\tau U}\\= & {} \left( \frac{\varepsilon }{\varepsilon _{-}}\right) ^{n+2-n_{0}} \le \varepsilon \le \tilde{\zeta }_m, \end{aligned}$$

    thus

    $$\begin{aligned} \frac{256}{(r-\tilde{r}_m)^2}e^{-\frac{r-\tilde{r}_m}{2}Q_{n+1}}\zeta \le \frac{1}{2}\tilde{\zeta }_m^{\frac{1}{2}}. \end{aligned}$$
  3. (3)

    We prove \(\tilde{K}_m\le K^{(m)}\) and \(\tilde{K}_m\le K.\) We first prove \(\tilde{K}_m\le K^{(m)}.\) Owing to \(\frac{2^{n+2-n_{0}}c\tau U}{2(24\tau +36)}\ge 5\) and

    $$\begin{aligned} m\le L-1=1+\left\lfloor \frac{2^{n+2-n_{0}}c\tau U \ln Q_{n+1}}{2(24\tau +36)\ln \frac{5}{2}}\right\rfloor , \end{aligned}$$

    then we have the inequalities

    $$\begin{aligned} \begin{aligned} \tilde{K}_m&\le \frac{2}{\tilde{\sigma }_m}\ln \frac{1}{\tilde{\varepsilon }_{m-1}} \le \frac{5\cdot 2^{m+2}\cdot 4Q_{n+1}^{4}}{r_0}\ln \frac{1}{\varepsilon ^{(\frac{5}{4})^{m-1}}}\\&\le \frac{160(\frac{5}{2})^{m-1}Q_{n+1}^{4}}{r_0}\ln \frac{1}{\varepsilon } \le \frac{160(\frac{5}{2})^{\lfloor \frac{2^{n+2-n_{0}}c\tau U \ln Q_{n+1}}{2(24\tau +36) \ln \frac{5}{2}}\rfloor }Q_{n+1}^{4}}{r_0}\ln \frac{1}{\varepsilon }\\&\le \frac{160Q_{n+1} ^{\frac{2^{n+2-n_{0}}c\tau U}{2(24\tau +36)}+4}}{r_0}\ln \frac{1}{\varepsilon } \le Q_{n+1}^{\frac{2^{n+2-n_{0}}c\tau U}{(24\tau +36)}}\ln \frac{1}{\varepsilon }\\&\le \left( \frac{1}{\varepsilon }\right) ^{\frac{1}{24\tau +36}}\left( \frac{1}{\varepsilon }\right) ^{\frac{1}{24\tau +36}} = \left( \frac{1}{\varepsilon }\right) ^{\frac{1}{12\tau +18}}, \end{aligned} \end{aligned}$$
    (9.2)

    and

    $$\begin{aligned}{} & {} 2^{L+2}\le \left( \frac{5}{2}\right) ^{\lfloor \frac{2^{n+2-n_{0}}c\tau U \ln Q_{n+1}}{2(24\tau +36) \ln \frac{5}{2}}\rfloor }\le Q_{n+1}^{\frac{2^{n+2-n_{0}}c\tau U}{2(24\tau +36)}}, \\{} & {} \frac{1}{2^{m+2}}\ge \frac{1}{2^{L+2}}\ge Q_{n+1}^{-\frac{2^{n+2-n_{0}}c\tau U}{2(24\tau +36)}}\ge \varepsilon ^{\frac{1}{2(24\tau +36)}}. \end{aligned}$$

    We conclude from all these inequalities that

    $$\begin{aligned} \frac{K^{(m)}}{\tilde{K}_m}\ge & {} \left( \frac{\gamma ^{2}\tilde{\sigma }_m^{2}}{2C_0\tilde{\zeta }_{m}^{\frac{1}{2}}}\right) ^{\frac{1}{2\tau +1}} \cdot \varepsilon ^{\frac{1}{12\tau +18}}\\\ge & {} \left( \frac{\gamma _{0}^{2}r_{0}^{2}}{(20\cdot 2^{m+2}Q_{n+1}^{4})^{2}\cdot 2C_{0}\cdot 2\varepsilon ^{\frac{1}{2}}}\right) ^{\frac{1}{2\tau +1}}\cdot \varepsilon ^{\frac{1}{12\tau +18}}\\\ge & {} \left( \frac{\gamma _{0}^{2}r_{0}^{2}}{C_{0}Q_{n+1}^{8}}\right) ^{\frac{1}{2\tau +1}} \cdot \left( \frac{1}{\varepsilon }\right) ^{\frac{1}{2(2\tau +1)}-\frac{1}{12\tau +18}-\frac{1}{2(24\tau +36)}}\\\ge & {} \left( \frac{\gamma _{0}^{2}r_{0}^{2}}{C_{0}Q_{n+1}^{8}}\right) ^{\frac{1}{2\tau +1}}\cdot Q_{n+1}^{2^{n+2-n_{0}} c\tau U\left( \frac{1}{2(2\tau +3)}-\frac{1}{12\tau +18}-\frac{1}{2(24\tau +36)}\right) }\\\ge & {} \left( \frac{\gamma _{0}^{2}r_{0}^{2}}{C_{0}Q_{n+1}^{8}}\right) ^{\frac{1}{2\tau +1}}\cdot Q_{n+1}^{2^{n+2-n_{0}}8} \ge 1, \end{aligned}$$

    i.e., \(\tilde{K}_m\le K^{(m)}.\) In (9.2), we have obtained \(\tilde{K}_m\le (\frac{1}{\varepsilon })^{\frac{1}{12\tau +18}}\). This together with \(K\ge \left( \frac{\gamma ^{2}}{2\varepsilon ^{\frac{1}{2}}}\right) ^{\frac{1}{4\tau +6}}\) shows that

    $$\begin{aligned} \begin{aligned} \frac{\tilde{K}_m}{K} \le&\frac{\left( \frac{1}{\varepsilon }\right) ^{\frac{1}{12\tau +18}}}{\left( \frac{\gamma ^{2}}{2\varepsilon ^{\frac{1}{2}}}\right) ^{\frac{1}{4\tau +6}}} \le \left( \frac{1}{\varepsilon }\right) ^{\frac{1}{12\tau +18}} \left( \frac{2\varepsilon ^{\frac{1}{2}}}{\gamma ^{2}}\right) ^{\frac{1}{4\tau +6}}\\ \le&\left( \frac{2\varepsilon ^{\frac{1}{6}}}{\gamma ^{2}}\right) ^{\frac{1}{4\tau +6}} \le 1, \end{aligned} \end{aligned}$$
    (9.3)

    i.e., \(\tilde{K}_m\le K.\) Thus we complete the proof of \(\tilde{K}_m\le \min \{K, K^{(m)}\}.\)

\(\square \)

1.3 Some Basic Inequalities

Lemma 9.1

(Cauchy’s estimate, [29]) Suppose  \(0<\delta <r.\) \(f(\theta , z, \bar{z})\) is real analytic on D(rs),  then

$$\begin{aligned}{} & {} \left\| \frac{\partial f}{\partial \theta _b}\right\| _{D(r-\delta ,s)}\le \frac{c}{\delta }\Vert f\Vert _{D(r,s)}, \\{} & {} \left\| \frac{\partial f}{\partial z^{\pm }_i}\right\| _{D(r,s/2)}\le \frac{c}{s}\Vert f\Vert _{D(r,s)}\textrm{e}^{p|i|}, \end{aligned}$$

here c is a constant.

Lemma 9.2

([5]) Let \(g: \mathcal {I}\rightarrow \mathbb {R}\) be \(b+3\) times differentiable, and assume that

  1. (1)

    \(\forall \sigma \in \mathcal {I}\) there exists \(s\le b+2\) such that \(g^{(s)}(\sigma )>B\).

  2. (2)

    There exists A such that \(|g^{(s)}(\sigma )|\le A\) for \(\forall \sigma \in \mathcal {I}\) and \(\forall s\) with \(1\le s\le b+3\).

Define

$$\begin{aligned} \mathcal {I}_h\equiv \{\sigma \in \mathcal {I}: |g(\sigma )|\le h\}, \end{aligned}$$

then

$$\begin{aligned} \frac{\textrm{meas}(\mathcal {I}_h)}{\textrm{meas}(\mathcal {I})}\le \frac{A}{B}2\left( 2+3+\cdots +(b+3)+ 2B^{-1}\right) h^{\frac{1}{b+3}}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, N., Geng, J. & Lou, Z. A KAM Theorem for the Time Quasi-periodic Reversible Perturbations of Linear Wave Equations Beyond Brjuno Conditions. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-024-10360-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-024-10360-z

Keywords

Mathematics Subject Classification

Navigation