Skip to main content
Log in

Limit Cycle Bifurcations Near Nonsmooth Homoclinic Cycle in Discontinuous Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The main aim of this paper is to study the limit cycle bifurcations near the homoclinic cycle in the discontinuous systems. Based on the impoved Lin’s method, we establish the bifurcation equation, which presents the existence of limit cycles bifurcated from nonsmooth homoclinic cycles under perturbation. Furthermore, we give an example to support our conclusions. After solving a boundary value problem with numerical tools, we provide the exact parameter values for the system having a limit cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1

Similar content being viewed by others

References

  1. Arneodo, A., Coullet, P., Tresser, C.: Oscillators with chaotic behavior: an illustration of a theorem by Shilnikov. J. Stat. Phys. 27, 171–182 (1982)

    Article  MathSciNet  Google Scholar 

  2. Andronov, A.A., Vitt, A., Khaikin, S.: Theory of Oscillations. Pergamon Press, Oxford (1966)

    Google Scholar 

  3. Brogliato, B.: Nonsmooth Impact Mechanics Lecture Notes in Control and Information Sciences, vol. 220. Springer, Berlin (1996)

    Google Scholar 

  4. Battelli, F., Fe\(\check{\rm {c}}\)kan, M.: Homoclinic trajectories in discontinuous systems. J. Dyn. Differ. Equ. 20(2), 337–376 (2008)

  5. Battelli, F., Fe\(\check{\rm {c}}\)kan, M.: On the chaotic behaviour of discontinuous systems. J. Dyn. Differ. Equ. 23, 495–540 (2011)

  6. Battelli, F., Fe\(\check{\rm {c}}\)kan, M.: Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. Phys. D 241, 1962–1975 (2012)

  7. Battelli, F., Fe\(\check{\rm {c}}\)kan, M.: On the Poincar\(\acute{\rm {e}}\)–Adronov–Melnikov method for the existence of grazing impact periodic solutions of differential equations. J. Differ. Equ. 268, 3725–3748 (2020)

  8. Coppel, W.A.: Dichotomies in Stability Theory, vol. 629. Springer, Berlin (1978)

    Google Scholar 

  9. Chen, H., Duan, S., Tang, Y., Xie, J.: Global dynamics of a mechanical system with dry friction. J. Differ. Equ. 265, 5490–5519 (2018)

    Article  MathSciNet  Google Scholar 

  10. Calamai, A., Franca, M.: Mel’nikov methods and homoclinic orbits in discontinuous systems. J. Dyn. Differ. Equ. 25, 733–764 (2013)

    Article  MathSciNet  Google Scholar 

  11. Carmona, V., Freire, E., Ponce, E., Ros, J., Torres, F.: Limit cycle bifurcation in 3D continuous piecewise linear systems with two zones: application to Chua’s circuit. Int. J. Bifur. Chaos Appl. Sci. Eng. 15, 3153–3164 (2005)

    Article  MathSciNet  Google Scholar 

  12. Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory. Grundlehren Math. Wiss., vol. 251. Springer, Berlin (1982)

    Google Scholar 

  13. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  14. Homburg, A.J., Jukes, A.C., Knobloch, J., Lamb, J.S.W.: Bifurcation from codimension one relative homoclinic cycles. Trans. Am. Math. Soc. 363(11), 5663–5701 (2011)

    Article  MathSciNet  Google Scholar 

  15. Huan, S., Li, Q., Yang, X.-S.: Chaos in three-dimensional hybrid systems and design of chaos generators. Nonlinear Dyn. 69, 1915–1927 (2012)

    Article  MathSciNet  Google Scholar 

  16. Jelbart, S., Kristiansen, K.U., Wechselberger, M.: Singularly perturbed boundary-equilibrium bifurcations. Nonlinearity 34, 7371–7414 (2021)

    Article  MathSciNet  Google Scholar 

  17. Kuku\(\check{\rm {c}}\)ka, P.: Melnikov method for discontinuous planar systems. Nonlinear Anal. Theory Methods Appl. 66, 2698–2719 (2007)

  18. Kunze, M., K\(\ddot{\rm {u}}\)pper, T.: Non-smooth dynamical systems: an overview. In: Fiedler, B. (eds.) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems. Springer, Berlin (2001). https://doi.org/10.1007/978-3-642-56589-2_19

  19. Knobloch, J., Lamb, J.S.W., Webster, K.N.: Using Lin’s method to solve Bykov’s problems. J. Differ. Equ. 257, 2984–3047 (2014)

    Article  MathSciNet  Google Scholar 

  20. Krauskopf, B., Rie\(\beta \), T.: A Lin’s method approach to finding and continuing heteroclinic connections involving periodic orbits. Nonlinearity 21, 1655–1690 (2008)

  21. Knobloch, J., Rie\(\beta \), T.: Lin’s method for heteroclinic chains involving periodic orbits. Nonlinearity 23, 23–54 (2010)

  22. Kierzenka, J., Shampine, L.T.: A BVP solver based on residual control and the MATLAB PSE. ACM Trans. Math. Softw. 27(3), 299–316 (2001)

    Article  MathSciNet  Google Scholar 

  23. Li, W., Chen, Y., Huang, L., Wang, J.: Global dynamics of a Filippov predator-prey model with two thresholds for integrated pest management. Chaos Solitons Fractals 157, 111881 (2022)

    Article  MathSciNet  Google Scholar 

  24. Lin, X.-B.: Using Melnikov’s method to solve Silnikov’s problems. Proc. R. Soc. Edinb. Sect. A 116, 295–325 (1990)

    Article  Google Scholar 

  25. Liu, S., Han, M.: Limit cycle bifurcations near double homoclinic and double heteroclinic loops in piecewise smooth systems. Chaos Solitons Fractals 175(part 1), 113970 (2023)

    Article  MathSciNet  Google Scholar 

  26. Llibre, J., Teruel, A.E.: Introduction to the Qualitative Theory of Differential Systems, Planar, Symmetric and Continuous Piecewise Linear Systems. Springer, Basel (2014)

    Book  Google Scholar 

  27. Palmer, K.J.: Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55, 225–256 (1984)

    Article  MathSciNet  Google Scholar 

  28. Rademacher, J.D.: Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit. J. Differ. Equ. 218, 390–443 (2005)

    Article  MathSciNet  Google Scholar 

  29. Wiggins, S.: Global Bifurcations and Chaos-Analytical Methods. Springer, New York (1988)

    Book  Google Scholar 

  30. Xiong, Y., Han, M.: Limit cycle bifurcations in discontinuous planar systems with multiple lines. J. Appl. Anal. Comput. 10, 1708–1719 (2020)

    MathSciNet  Google Scholar 

  31. Yew, A.C.: Multipulses of nonlinearly coupled Schrödinger equations. J. Differ. Equ. 173, 92–137 (2001)

    Article  MathSciNet  Google Scholar 

  32. Zhang, W., Krauskopf, B., Kirk, V.: How to find a codimension-one heteroclinic cycle between two periodic orbits. Discrete Contin. Dyn. Syst. 32, 2825–2851 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the National Natural Science Foundation of China under Grant No.11871022, and supported in part by Science and Technology Commission of Shanghai Municipality (No. 22DZ2229014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingbo Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, D., Liu, X. Limit Cycle Bifurcations Near Nonsmooth Homoclinic Cycle in Discontinuous Systems. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-024-10358-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-024-10358-7

Keywords

Navigation