Skip to main content
Log in

Long Term Behavior of 2D and 3D Non-autonomous Random Convective Brinkman–Forchheimer Equations Driven by Colored Noise

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The long time behavior of Wong–Zakai approximations of 2D as well as 3D non-autonomous stochastic convective Brinkman–Forchheimer (CBF) equations with non-linear diffusion terms on some bounded and unbounded domains is discussed in this work. To establish the existence of pullback random attractors, the concept of asymptotic compactness (AC) is used. In bounded domains, AC is proved via compact Sobolev embeddings. In unbounded domains, due to the lack of compact embeddings, the ideas of energy equations and uniform tail-estimates are exploited to prove AC. In the literature, CBF equations are also known as Navier–Stokes equations (NSE) with damping, and it is interesting to see that the modification in NSE by linear and nonlinear damping provides better results than that available for NSE in 2D and 3D. The presence of linear damping term helps to establish the results in the whole space \(\mathbb {R}^d\). The nonlinear damping term supports to obtain the results in 3D and to cover a large class of nonlinear diffusion terms also. In addition, we prove the existence of a unique pullback random attractor for stochastic CBF equations driven by additive white noise. Finally, for additive as well as multiplicative white noise cases, we establish the convergence of solutions and upper semicontinuity of pullback random attractors for Wong–Zakai approximations of stochastic CBF equations towards the pullback random attractors for stochastic CBF equations when the correlation time of colored noise converges to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antontsev, S.N., de Oliveira, H.B.: The Navier–Stokes problem modified by an absorption term. Appl. Anal. 89(12), 1805–1825 (2010)

    Article  MathSciNet  Google Scholar 

  2. Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998)

    Book  Google Scholar 

  3. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Fundamental Principles of Mathematical Sciences, vol. 343. Springer, Heidelberg (2011)

    Book  Google Scholar 

  4. Ball, J.M.: Global attractors for damped semilinear wave equations. Discrete Contin. Dyn. Syst. Ser. B 10(1–2), 31–52 (2004)

    MathSciNet  Google Scholar 

  5. Bates, P., Lisei, H., Lu, K.: Attractors for stochastic lattice dynamical systems. Stoch. Dyn. 6(1), 1–21 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bates, P., Lu, K., Wang, B.: Random attractors for stochastic reaction–diffusion equations on unbounded domains. J. Differ. Equ. 246(2), 845–869 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bessaih, H., Millet, A.: On stochastic modified 3D Navier–Stokes equations with anisotropic viscosity. J. Math. Anal. Appl. 462(1), 915–956 (2018)

    Article  MathSciNet  Google Scholar 

  8. Brzeźniak, Z., Capiński, M., Flandoli, F.: Stochastic partial differential equations and turbulence. Math. Models Methods Appl. Sci. 1(1), 41–59 (1991)

    Article  MathSciNet  Google Scholar 

  9. Brzeźniak, Z., Capiński, M., Flandoli, F.: Pathwise global attractors for stationary random dynamical systems. Probab. Theory Rel. Fields 95(1), 87–102 (1993)

    Article  MathSciNet  Google Scholar 

  10. Brzézniak, Z., Caraballo, T., Langa, J.A., Li, Y., Lukaszewicz, G., Real, J.: Random attractors for stochastic 2D Navier–Stokes equations in some unbounded domains. J. Differ. Equ. 255, 3897–3919 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Brzeźniak, Z., Dhariwal, G.: Stochastic tamed Navier–Stokes equations on \(\mathbb{R} ^3\): the existence and the uniqueness of solutions and the existence of an invariant measure. J. Math. Fluid Mech. 22(2), 54 (2020)

    Article  Google Scholar 

  12. Caraballo, T., Lukaszewicz, G., Real, J.: Pullback attractors for asymptotically compact non-autonomous dynamical systems. Nonlinear Anal. 64(3), 484–498 (2006)

    Article  MathSciNet  Google Scholar 

  13. Caraballo, T., Lukaszewicz, G., Real, J.: Pullback attractors for non-autonomous 2D-Navier–Stokes equations in some unbounded domains. C. R. Math. Acad. Sci. Paris 342(4), 263–268 (2006)

    MathSciNet  Google Scholar 

  14. Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. American Mathematical Society, Providence (2002)

    Google Scholar 

  15. Chueshov, I.: Monotone Random Systems Theory and Applications, Lecture Notes in Mathematics, vol. 1779. Springer, Berlin (2002)

  16. Crauel, H., Debussche, A., Flandoli, F.: Random attractors. J. Dyn. Differ. Equ. 9(2), 307–341 (1995)

    Article  MathSciNet  Google Scholar 

  17. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  18. Fan, X.: Attractors for a damped stochastic wave equation of the sine-Gordon type with sublinear multiplicative noise. Stoch. Anal. Appl. 24(4), 767–793 (2006)

    Article  MathSciNet  Google Scholar 

  19. Farwig, R., Kozono, H., Sohr, H.: An \(L^q\)-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MathSciNet  Google Scholar 

  20. Feng, X., You, B.: Random attractors for the two-dimensional stochastic g-Navier–Stokes equations. Stochastics 92(4), 613–626 (2020)

    Article  MathSciNet  Google Scholar 

  21. Fujiwara, D., Morimoto, H.: An \(L^r\)-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(3), 685–700 (1977)

    MathSciNet  Google Scholar 

  22. Gu, A.: Weak pullback mean random attractors for non-autonomous \(p\)-Laplacian equations. Discrete Contin. Dyn. Syst. Ser. B 26(7), 3863–3878 (2021)

    MathSciNet  Google Scholar 

  23. Gu, A., Guo, B., Wang, B.: Long term behavior of random Navier–Stokes equations driven by colored noise. Discrete Contin. Dyn. Syst. Ser. B 25(7), 2495–2532 (2020)

    MathSciNet  Google Scholar 

  24. Gu, A., Lu, K., Wang, B.: Asymptotic behavior of random Navier–Stokes equations driven by Wong–Zakai approximations. Discrete Contin. Dyn. Syst. Ser. B 39(1), 185–218 (2019)

    Article  MathSciNet  Google Scholar 

  25. Gu, A., Wang, B.: Asymptotic behavior of random Fitzhugh–Nagumo systems driven by colored noise. Discrete Contin. Dyn. Syst. Ser. B 23(4), 1689–1720 (2018)

    MathSciNet  Google Scholar 

  26. Hajduk, K.W., Robinson, J.C.: Energy equality for the 3D critical convective Brinkman–Forchheimer equations. J. Differ. Equ. 263(11), 7141–7161 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Han, Z., Zhou, S.: Random exponential attractor for the 3D non-autonomous stochastic damped Navier–Stokes equation. J. Dyn. Differ. Equ. 35(2), 1133–1149 (2023)

    Article  MathSciNet  Google Scholar 

  28. Heywood, J.G.: The Navier–Stokes equations: on the existence, regularity and decay of solutions. Ind. Univ. Math. J. 29(5), 639–681 (1980)

    Article  MathSciNet  Google Scholar 

  29. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. Noth-Holland (1989)

  30. Kalantarov, V.K., Zelik, S.: Smooth attractors for the Brinkman–Forchheimer equations with fast growing nonlinearities. Commun. Pure Appl. Anal. 11(5), 2037–2054 (2012)

    Article  MathSciNet  Google Scholar 

  31. Kelly, D., Melbourne, I.: Smooth approximation of stochastic differential equations. Ann. Probab. 44(1), 479–520 (2016)

    Article  MathSciNet  Google Scholar 

  32. Kinra, K., Mohan, M.T.: Random attractors and invariant measures for stochastic convective Brinkman–Forchheimer equations on 2D and 3D unbounded domains. Discrete Contin. Dyn. Syst. Ser. B (2023). https://doi.org/10.3934/dcdsb.2023100

    Article  Google Scholar 

  33. Kinra, K., Mohan, M.T.: Existence and upper semicontinuity of random attractors for the 2D stochastic convective Brinkman–Forchheimer equations in bounded domains. Stochastics 95(6), 1042–1077 (2023)

    Article  MathSciNet  Google Scholar 

  34. Kinra, K., Mohan, M.T.: Large time behavior of the deterministic and stochastic 3D convective Brinkman–Forchheimer equations in periodic domains. J. Dyn. Differ. Equ. (2021). https://doi.org/10.1007/s10884-021-10073-7

    Article  Google Scholar 

  35. Kinra, K., Mohan, M.T.: Weak pullback mean random attractors for the stochastic convective Brinkman–Forchheimer equations and locally monotone stochastic partial differential equations. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 25(01), 2250005 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  36. Kinra, K., Mohan, M.T.: Wong–Zakai approximation and support theorem for 2D and 3D stochastic convective Brinkman–Forchheimer equations. J. Math. Anal. Appl. 515(2), 36 (2022)

    Article  MathSciNet  Google Scholar 

  37. Kinra, K., Mohan, M.T.: Existence and upper semicontinuity of random pullback attractors for 2D and 3D non-autonomous stochastic convective Brinkman–Forchheimer equations on whole space. Differ. Integral Equ. 36(5–6), 367–412 (2023)

    MathSciNet  Google Scholar 

  38. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    Google Scholar 

  39. Liu, H., Gao, H.: Stochastic 3D Navier–Stokes equations with nonlinear damping: martingale solution, strong solution and small time LDP. In: Interdisciplinary Mathematical Sciences Stochastic PDEs and Modelling of Multiscale Complex System, chapter 2, pp. 9–36 (2019)

  40. Liu, W., Röckner, M.: Local and global well-posedness of SPDE with generalized coercivity conditions. J. Differ. Equ. 254(2), 725–755 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Liu, W.: Well-posedness of stochastic partial differential equations with Lyapunov condition. J. Differ. Equ. 255(3), 572–592 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. Lu, K., Wang, B.: Wong–Zakai approximations and long term behavior of stochastic partial differential equations. J. Dyn. Differ. Equ. 31(3), 1341–1371 (2019)

    Article  MathSciNet  Google Scholar 

  43. Markowich, P.A., Titi, E.S., Trabelsi, S.: Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model. Nonlinearity 29(4), 1292–1328 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  44. Mohan, M.T.: On the convective Brinkman–Forchheimer equations (submitted)

  45. Mohan, M.T.: Stochastic convective Brinkman–Forchheimer equations (submitted). arXiv:2007.09376

  46. Mohan, M.T.: The \(\mathbb{H} ^1\)-compact global attractor for the two dimentional convective Brinkman–Forchheimer equations in unbounded domains. J. Dyn. Control Syst. (2021). https://doi.org/10.1007/s10883-021-09545-2

    Article  Google Scholar 

  47. Mohan, M.T., Sritharan, S.S.: Stochastic Euler equations of fluid dynamics with Lévy noise. Asymptot. Anal. 99(1–2), 67–103 (2016)

    MathSciNet  Google Scholar 

  48. Qin, L., Ma, D., Shu, J.: Wong–Zakai approximations and attractors for non-autonomous stochastic FitzHugh–Nagumo system on unbounded domains. Stoch. Anal. Appl. 40(5), 854–890 (2022)

    Article  MathSciNet  Google Scholar 

  49. Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  50. Röckner, M., Zhang, X.: Tamed 3D Navier–Stokes equation: existence, uniqueness and regularity. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12(4), 525–549 (2009)

    Article  MathSciNet  Google Scholar 

  51. Röckner, M., Zhang, X.: Stochastic tamed 3D Navier–Stokes equation: existence, uniqueness and ergodicity. Probab. Theory Relat. Fields 145(1–2), 211–267 (2009)

    Article  MathSciNet  Google Scholar 

  52. Rosa, R.: The global attractor for the 2D Navier–Stokes flow on some unbounded domains. Nonlinear Anal. 32(1), 71–85 (1998)

    Article  MathSciNet  Google Scholar 

  53. Shu, J., Ma, D., Huang, X., Zhang, J.: Wong–Zakai approximations and limiting dynamics of stochastic Ginzburg–Landau equations. Stoch. Dyn. 22(4), 18 (2022)

    Article  MathSciNet  Google Scholar 

  54. Sussmann, H.J.: On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab. 6(1), 19–41 (1978)

    Article  MathSciNet  Google Scholar 

  55. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1977)

    Google Scholar 

  56. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd edn, CBMS-NSF Regional Conference Series in Applied Mathematics (1995)

  57. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68. Springer, Berlin (1988)

  58. Uhlenbeck, G., Ornstein, L.: On the theory of Brownian motion. Phys. Rev. 36(5), 823–841 (1930)

    Article  ADS  CAS  Google Scholar 

  59. Wang, B.: Attractors for reaction–diffusion equations in unbounded domains. Physica D 128(1), 41–52 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  60. Wang, B.: Random attractors for the stochastic Benjamin–Bona–Mahony equation on unbounded domains. J. Differ. Equ. 246(6), 2506–2537 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  61. Wang, B.: Periodic random attractors for stochastic Navier–Stokes equations on unbounded domain. Electron. J. Differ. Equ. 2012(59), 1–18 (2012)

    MathSciNet  Google Scholar 

  62. Wang, B.: Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms. Stoch. Dyn. 14(4), 1450009, 31 pp (2014)

    Article  MathSciNet  Google Scholar 

  63. Wang, B.: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differ. Equ. 253(5), 1544–1583 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  64. Wang, B.: Weak pullback attractors for mean random dynamical systems in Bochner spaces. J. Dyn. Differ. Equ. 31(4), 2177–2204 (2019)

    Article  MathSciNet  Google Scholar 

  65. Wang, B.: Weak pullback attractors for stochastic Navier–Stokes equations with nonlinear diffusion terms. Proc. Am. Math. Soc. 147(4), 1627–1638 (2019)

    Article  MathSciNet  Google Scholar 

  66. Wang, X., Li, D., Shen, J.: Wong–Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete Contin. Dyn. Syst. Ser. B 26(5), 2829–2855 (2021)

    MathSciNet  Google Scholar 

  67. Wang, X., Lu, K., Wang, B.: Wong–Zakai approximations and attractors for stochastic reaction–diffusion equations on unbounded domains. J. Differ. Equ. 264(1), 378–424 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  68. Wang, X., Shen, J., Lu, K., Wang, B.: Wong–Zakai approximations and random attractors for non-autonomous stochastic lattice systems. J. Differ. Equ. 280, 477–516 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  69. Wang, M.C., Uhlenbeck, G.E.: On the theory of Brownian motion. II. Rev. Modern Phys. 17(2–3), 323–342 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  70. Wong, E., Zakai, M.: On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3(2), 213–229 (1965)

    Article  MathSciNet  Google Scholar 

  71. Wong, E., Zakai, M.: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Stat. 36(5), 1560–1564 (1965)

    Article  MathSciNet  Google Scholar 

  72. Xu, J., Caraballo, T.: Long time behavior of stochastic nonlocal partial differential equations and Wong–Zakai approximations. SIAM J. Math. Anal. 54(3), 2792–2844 (2022)

    Article  MathSciNet  Google Scholar 

  73. Yang, Y., Shu, J., Wang, X.: Wong–Zakai approximations and random attractors of non-autonomous stochastic discrete complex Ginzburg–Landau equations. J. Math. Phys. 62(6), 29 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for the helpful comments. The first author would like to thank the Council of Scientific & Industrial Research (CSIR), India for financial assistance (File No. 09/143(0938)/2019-EMR-I). M. T. Mohan would like to thank the Department of Science and Technology (DST), Govt of India for Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award (IFA17-MA110).

Funding

CSIR, India, 09/143(0938)/2019-EMR-I (K. Kinra), DST, India, IFA17-MA110 (M. T. Mohan).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally.

Corresponding author

Correspondence to Manil T. Mohan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Pullback Random Attractors for Wong–Zakai Approximations of 2D Stochastic NSE on Unbounded Poincaré Domains

Pullback Random Attractors for Wong–Zakai Approximations of 2D Stochastic NSE on Unbounded Poincaré Domains

In this appendix, we discuss the existence and uniqueness of \(\mathfrak {D}\)-pullback random attractors for Wong–Zakai approximations of 2D stochastic NSE on Poincaré domains \(\mathcal {O}\) (that is, satisfying Assumption 1.7) with nonlinear diffusion term. Consider the Wong–Zakai approximations of 2D NSE on \(\mathcal {O}\) as

$$\begin{aligned} \left\{ \begin{aligned}\frac{\partial \varvec{u}}{\partial t}-\nu \Delta \varvec{u}+(\varvec{u}\cdot \nabla )\varvec{u}+\nabla p&=\varvec{f}(t) + S(t,x,\varvec{u})\mathcal {Z}_{\delta }(\vartheta _t\omega ),{} & {} \text{ in } \ \mathcal {O}\times (\mathfrak {s},\infty ), \\ \nabla \cdot \varvec{u}&=0,{} & {} \text{ in } \ \mathcal {O}\times (\mathfrak {s},\infty ), \\ \varvec{u}&={{\textbf {0}}}{} & {} \text{ on } \ \partial \mathcal {O}\times (\mathfrak {s},\infty ), \\ \varvec{u}|_{t=\mathfrak {s}}&=\varvec{u}_{\mathfrak {s}},{} & {} x\in \mathcal {O} \text{ and } \mathfrak {s}\in \mathbb {R}, \end{aligned} \right. \end{aligned}$$
(A.1)

where \(\nu \) is the coefficient of kinematic viscosity of the fluid. In the work [23], authors proved the existence of a unique \(\mathfrak {D}\)-pullback random random attractor for the system (A.1) under Assumption 1.3. Here, we assume that the following conditions are satisfied:

Assumption A.1

Let \(S:\mathbb {R}\times \mathcal {O}\times \mathbb {R}^2\rightarrow \mathbb {R}^2\) be a continuous function such that for all \(t\in \mathbb {R}\), \(x\in \mathcal {O}\) and \({\textbf {u}}\in \mathcal {O}\)

$$\begin{aligned} |S(t,x,{\varvec{u}})|&\le |\mathcal {S}_1(t,x)||{\varvec{u}}|^{q-1}+|\mathcal {S}_2(t,x)|, \end{aligned}$$

where \(1\le q<2\), \(\mathcal {S}_1\in \text {L}^{\infty }_{loc }(\mathbb {R};\mathbb {L}^{\frac{2}{2-q}}(\mathcal {O}))\) and \(\mathcal {S}_2\in \text {L}^{\infty }_{loc }(\mathbb {R};\mathbb {L}^{2}(\mathcal {O}))\). Furthermore, suppose that \(S(t,x,\varvec{u})\) is locally Lipschitz continuous with respect to \(\varvec{u}\).

Remark A.2

Note that Assumption A.1 is clearly different from Assumption 1.3. Therefore, it is worth to prove the results under Assumption A.1.

Assumption A.3

We assume that the external forcing term \(\varvec{f}\in \text {L}^2_{\text {loc}}(\mathbb {R};\mathbb {L}^2(\mathcal {O}))\) satisfies

$$\begin{aligned} \int _{-\infty }^{\mathfrak {s}} e^{\nu \lambda \xi }\Vert \varvec{f}(\cdot ,\xi )\Vert ^2_{\mathbb {L}^2(\mathcal {O})}\textrm{d}\xi <\infty , \ \ \text { for all } \mathfrak {s}\in \mathbb {R}. \end{aligned}$$

and for every \(c>0\)

$$\begin{aligned} \lim _{\tau \rightarrow -\infty }e^{c\tau }\int _{-\infty }^{0} e^{\nu \lambda \xi }\Vert \varvec{f}(\cdot ,\xi +\tau )\Vert ^2_{\mathbb {L}^2(\mathcal {O})}\textrm{d}\xi =0, \end{aligned}$$

where \(\lambda \) and \(\nu \) are given in (1.10) and (A.1), respectively.

Since, 2D CBF equations with \(r=1\) is a linear perturbation of 2D NSE, one can prove the next theorem using the same arguments as it is carried for 2D random CBF equations (2.12) with \(d=2\) and \(r=1\) in Sect. 4.2. Moreover, there are only minor changes, hence we omit the proof here.

Theorem A.4

Assume that Assumptions A.1 and A.3 hold true. Then there exists a unique \(\mathfrak {D}\)-pullback random attractor for the system (A.1), in \(\mathbb {L}^2(\mathcal {O})\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinra, K., Mohan, M.T. Long Term Behavior of 2D and 3D Non-autonomous Random Convective Brinkman–Forchheimer Equations Driven by Colored Noise. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-024-10347-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-024-10347-w

Keywords

Mathematics Subject Classification

Navigation