Skip to main content
Log in

Existence of Global Entropy Solution for Eulerian Droplet Models and Two-phase Flow Model with Non-constant Air Velocity

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This article addresses the question concerning the existence of global entropy solution for generalized Eulerian droplet models with air velocity depending on both space and time variables. When \(f(u)=u,\) \(\kappa (t)=const.\) and \(u_a(x,t)=const.\) in (1.1), the study of the Riemann problem has been carried out by Keita and Bourgault (J Math Anal Appl 472(1):1001–1027, 2019) and Zhang et al. (Appl Anal 102(2):576–589, 2023). We show the global existence of the entropy solution to (1.1) for any strictly increasing function \(f(\cdot )\) and \(u_a(x,t)\) depending only on time with mild regularity assumptions on the initial data via shadow wave tracking approach. This represents a significant improvement over the findings of Yang (J Differ Equ 159(2):447–484, 1999). Next, by using the generalized variational principle, we prove the existence of an explicit entropy solution to (1.1) with \(f(u)=u,\) for all time \(t>0\) and initial mass \(v_0>0,\) where \(u_a(x,t)\) depends on both space and time variables, and also has an algebraic decay in the time variable. This improves the results of many authors such as Ha et al. (J Differ Equ 257(5):1333–1371, 2014), Cheng and Yang (Appl Math Lett 135(6):8, 2023) and Ding and Wang (Quart Appl Math 62(3):509–528, 2004) in various ways. Furthermore, by employing the shadow wave tracking procedure, we discuss the existence of global entropy solution to the generalized two-phase flow model with time-dependent air velocity that extends the recent results of Shen and Sun (J Differ Equ 314:1–55, 2022).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  1. Aw, A., Rascle, M.: Resurrection of “second order’’ models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bressan, A.: Hyperbolic Systems of Conservation Laws. The One-dimensional Cauchy problem, vol. 20. Oxford University Press, Oxford (2000)

    Book  Google Scholar 

  3. Bressan, A.: Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl. 170(2), 414–432 (1992)

    Article  MathSciNet  Google Scholar 

  4. Bressan, A.: The unique limit of the Glimm scheme. Arch. Rational Mech. Anal. 130(3), 205–230 (1995)

    Article  MathSciNet  Google Scholar 

  5. Bressan, A., Nguyen, T.: Non-existence and non-uniqueness for multidimensional sticky particle systems. Kinet. Relat. Models 7(2), 205–218 (2014)

    Article  MathSciNet  Google Scholar 

  6. Kiselev, A., Tan, C.: Global regularity for 1D Eulerian dynamics with singular interaction forces. SIAM J. Math. Anal. 50(6), 6208–6229 (2018)

    Article  MathSciNet  Google Scholar 

  7. Keyfitz, B.L., Kranzer, H.C.: A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch. Rational Mech. Anal. 72(3), 219–241 (1980)

    Article  MathSciNet  Google Scholar 

  8. Piccoli, B., Andrea, T., Zanella, M.: Model-based assessment of the impact of driver-assist vehicles using kinetic theory. Z. Angew. Math. Phys. 71(5), 25 (2020)

    Article  MathSciNet  Google Scholar 

  9. Shen, C., Sun, M.: Exact Riemann solutions for the drift-flux equations of two-phase flow under gravity. J. Differ. Equ. 314, 1–55 (2022)

    Article  MathSciNet  Google Scholar 

  10. Shen, C.: The Riemann problem for the pressureless Euler system with the Coulomb-like friction term. IMA J. Appl. Math. 81(1), 76–99 (2016)

    MathSciNet  Google Scholar 

  11. Dafermos, C.M.: Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38, 33–41 (1972)

    Article  MathSciNet  Google Scholar 

  12. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. Fourth edition. Grundlehren der mathematischen Wissenschaften, vol 325. Springer, Berlin (2016)

  13. De Lellis, C.: Rectifiable Sets, Densities, and Tangent Measures. European Mathematical Society (EMS), Zürich (2008)

    Book  Google Scholar 

  14. Mitrović, D., Nedeljkov, M.: Delta shock waves as a limit of shock waves. J. Hyperbolic Differ. Equ. 4(4), 629–653 (2007)

    Article  MathSciNet  Google Scholar 

  15. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Co. Inc, New York (1955)

    Google Scholar 

  16. Weinan, E., Rykov, Y.G., Sinai, Y.G.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177(2), 349–380 (1996)

    Article  MathSciNet  Google Scholar 

  17. Bouchut, F.: On zero pressure gas dynamics. Advances in kinetic theory and computing, 171–190, Ser. Adv. Math. Appl. Sci., 22, World Sci. Publ., River Edge, NJ (1994)

  18. Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Commun. Partial Differ. Equ. 24(11–12), 2173–2189 (1999)

    MathSciNet  Google Scholar 

  19. Bouchut, F., James, F.: One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. 32(7), 891–933 (1998)

    Article  MathSciNet  Google Scholar 

  20. Bouchut, F., Jin, S., Li, X.: Numerical approximations of pressureless and isothermal gas dynamics. SIAM J. Numer. Anal. 41(1), 135–158 (2003)

    Article  MathSciNet  Google Scholar 

  21. Huang, F., Wang, Z.: Well posedness for pressureless flow. Commun. Math. Phys. 222(1), 117–146 (2001)

    Article  MathSciNet  Google Scholar 

  22. Huang, F.: Weak solution to pressureless type system. Commun. Partial Differ. Equ. 30(1–3), 283–304 (2005)

    Article  MathSciNet  Google Scholar 

  23. Huang, F., Wang, D., Yuan, D.: Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete Contin. Dyn. Syst. 39, 3535–3575 (2019)

    Article  MathSciNet  Google Scholar 

  24. Cavalletti, F., Sedjro, M., Westdickenberg, M.: A simple proof of global existence for the 1D pressureless gas dynamics equations. SIAM J. Math. Anal. 47(1), 66–79 (2015)

    Article  MathSciNet  Google Scholar 

  25. Holden, H., Risebro, N.H.: Front tracking for hyperbolic conservation laws. Second edition. Applied Mathematical Sciences, 152. Springer, Heidelberg (2015)

  26. Yang, H.: Riemann problems for a class of coupled hyperbolic systems of conservation laws. J. Differ. Equ. 159(2), 447–484 (1999)

    Article  MathSciNet  Google Scholar 

  27. Cheng, H., Yang, H.: The Riemann problem for the inhomogeneous pressureless Euler equations. Appl. Math. Lett. 135(6), Paper No. 108442, 8 (2023)

  28. Yang, H., Sun, W.: The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws. Nonlinear Anal. 67(11), 3041–3049 (2007)

    Article  MathSciNet  Google Scholar 

  29. Boudin, L.: A solution with bounded expansion rate to the model of viscous pressureless gases. SIAM J. Math. Anal. 32(1), 172–193 (2000)

    Article  MathSciNet  Google Scholar 

  30. Boudin, L., Mathiaud, J.: A numerical scheme for the one-dimensional pressureless gases system. Numer. Methods Partial Differ. Equ. 28(6), 1729–1746 (2012)

    Article  MathSciNet  Google Scholar 

  31. Neumann, L., Oberguggenberger, M., Sahoo, M.R., Sen, A.: Initial-boundary value problem for 1D pressureless gas dynamics. J. Differ. Equ. 316, 687–725 (2022)

    Article  MathSciNet  Google Scholar 

  32. Natile, L., Sava\(\acute{{\rm r}}\)e, G.: A Wasserstein approach to the one-dimensional sticky particle system. SIAM J. Math. Anal. 41(4), 1340–1365 (2009)

  33. Nedeljkov, M., Neumann, L., Oberguggenberger, M., Michael, Sahoo, M.R.: Radially symmetric shadow wave solutions to the system of pressureless gas dynamics in arbitrary dimensions. Nonlinear Anal. 163, 104–126 (2017)

    Article  MathSciNet  Google Scholar 

  34. Nedeljkov, M.: Shadow waves: entropies and interactions for delta and singular shocks. Arch. Ration. Mech. Anal. 197(2), 489–537 (2010)

    Article  MathSciNet  Google Scholar 

  35. Nedeljkov, M., Ružičić, S.: On the uniqueness of solution to generalized Chaplygin gas. Discrete Contin. Dyn. Syst. 37(8), 4439–4460 (2017)

    Article  MathSciNet  Google Scholar 

  36. Nedeljkov, M.: Higher order shadow waves and delta shock blow up in the Chaplygin gas. J. Differ. Equ. 256(11), 3859–3887 (2014)

    Article  MathSciNet  Google Scholar 

  37. Risebro, N.H.: A front-tracking alternative to the random choice method. Proc. Amer. Math. Soc. 117(4), 1125–1139 (1993)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Q., He, F., Ba, Y.: Delta-shock waves and Riemann solutions to the generalized pressureless Euler equations with a composite source term. Appl. Anal. 102(2), 576–589 (2023)

    Article  MathSciNet  Google Scholar 

  39. De la cruz, R., Juajibioy, J.: Delta shock solution for a generalized zero-pressure gas dynamics system with linear damping. Acta Appl. Math. 177, 1-25 (2022)

  40. Ha, S.Y., Huang, F., Wang, Y.: A global unique solvability of entropic weak solution to the one-dimensional pressureless Euler system with a flocking dissipation. J. Differ. Equ. 257(5), 1333–1371 (2014)

    Article  MathSciNet  Google Scholar 

  41. Ružičić, S., Nedeljkov, M.: Shadow wave tracking procedure and initial data problem for pressureless gas model. Acta Appl. Math. 171, 36 (2021)

    Article  MathSciNet  Google Scholar 

  42. Keita, S., Bourgault, Y.: Eulerian droplet model: delta-shock waves and solution of the Riemann problem. J. Math. Anal. Appl. 472(1), 1001–1027 (2019)

    Article  MathSciNet  Google Scholar 

  43. Keita, S.: Eulerian Droplet Models: Mathematical Analysis, Improvement and Applications, Ph.D thesis, https://doi.org/10.20381/ruor-22165

  44. Evje, S., Flatten, T.: On the wave structure of two-phase flow models. SIAM J. Appl. Math. 67, 487–511 (2007)

    Article  MathSciNet  Google Scholar 

  45. Evje, S., Karlsen, K.H.: Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245(9), 2660–2703 (2008)

    Article  MathSciNet  Google Scholar 

  46. Leslie, T.M., Tan, C.: Sticky particle Cucker-Smale dynamics and the entropic selection principle for the 1D Euler-alignment system. Commun. Partial Differ. Equ. 48(5), 753–791 (2023)

    Article  MathSciNet  Google Scholar 

  47. Nguyen, T., Tudorascu, A.: One-dimensional pressureless gas systems with/without viscosity. Commun. Partial Differ. Equ. 40(9), 1619–1665 (2015)

    Article  MathSciNet  Google Scholar 

  48. Nguyen, T., Tudorascu, A.: Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws. SIAM J. Math. Anal. 40(2), 754–775 (2008)

    Article  MathSciNet  Google Scholar 

  49. Ding, X., Wang, Z.: Existence and uniqueness of discontinuous solutions defined by Lebesgue-Stieltjes integral. Sci. China Ser. A 39(8), 807–819 (1996)

    MathSciNet  Google Scholar 

  50. Ding, Y., Huang, F.: On a nonhomogeneous system of pressureless flow. Quart. Appl. Math. 62(3), 509–528 (2004)

    Article  MathSciNet  Google Scholar 

  51. Lu, Y.G.: Existence of global entropy solutions to general system of Keyfitz-Kranzer type. J. Funct. Anal. 264(10), 2457–2468 (2013)

    Article  MathSciNet  Google Scholar 

  52. Lu, Y.G.: Existence of global weak entropy solutions to some nonstrictly hyperbolic systems. SIAM J. Math. Anal. 45(6), 3592–3610 (2013)

    Article  MathSciNet  Google Scholar 

  53. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35(6), 2317–2328 (1998)

    Article  MathSciNet  Google Scholar 

  54. Zhang, Y., Zhang, Y.: Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Commun. Pure Appl. Anal 18(3), 1523–1545 (2019)

    Article  MathSciNet  Google Scholar 

  55. Bourgault, Y., Habashi, W.G., Dompierre, J., Baruzzi, G.S.: A finite element method study of Eulerian droplets impingement models. Internat. J. Numer. Methods Fluids 29(4), 429–449 (1999)

    Article  Google Scholar 

  56. Wang, Y., Sun, M.: Formation of delta shock and vacuum state for the pressureless hydrodynamic model under the small disturbance of traffic pressure. J. Math. Phys. 64(1), 23 (2023)

    Article  MathSciNet  Google Scholar 

  57. Wang, Z., Huang, F., Ding, X.: On the Cauchy problem of transportation equations. Acta Math. Appl. Sinica (English Ser.) 13(2), 113–122 (1997)

    Article  MathSciNet  Google Scholar 

  58. Wang, Z., Ding, X.: Uniqueness of generalized solution for the Cauchy problem of transportation equations. Acta Math. Sci. (English Ed.) 17(3), 341–352 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the comments and suggestions made by the anonymous referee to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhrojyoti Sen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, A., Sen, A. Existence of Global Entropy Solution for Eulerian Droplet Models and Two-phase Flow Model with Non-constant Air Velocity. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-023-10337-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10337-4

Keywords

Mathematics Subject Classification

Navigation