Skip to main content
Log in

On weak/Strong Attractor for a 3-D Structural-Acoustic Interaction with Kirchhoff–Boussinesq Elastic Wall Subject to Restricted Boundary Dissipation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic environment is given by a linear 3-D wave equation subject to locally distributed boundary dissipation, while the dynamics on the (flat) structural wall is given by a 2D-Kirchhoff-Boussinesq plate equation, subject to linear dissipation and supercritical nonlinear restoring forces. It is shown that the trajectories of the dynamical system defined on finite energy phase space are attracted asymptotically to a global attractor. The main challenges of the problem are related to: (i) superlinearity of the elastic energy of the structural component, (ii) Boussinesq effects of internal forces potentially leading to a finite time blowing up solutions, (iii) partially-restricted boundary dissipation placed on the interface only. The resulting system lacks dissipativity along with the suitable compactness properties, both corner stones of PDE dynamical system theories [1]. To contend with the difficulties, a new hybrid approach based on a suitable adaptation of the so called “energy methods” [2, 3] and compensated compactness [4] has been developed. The geometry of the acoustic chamber plays a critical role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Handbook of differential equations: evolutionary equations. Vol. IV, 103–200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2008)

  2. Ball, J.M.: Global attractors for damped semilinear wave equations. Discrete Contin. Dyn. Syst. 10(1 &2), 31–52 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Kalantarov, V., Savostianov, A., Zelik, S.: Attractors for damped quintic wave equations in bounded domains. Ann. Henri Poincaré 17(9), 2555–2584 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chueshov, I., Lasiecka, I.: Long Time Behavior of second Order Evolution Equations with nonlinear Damping. Memoires AMS 195(912), 1–183 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Morse, P.M., Ingard, K.: Theoretical Acoustics. McGraw-Hill, New York (1968)

    Google Scholar 

  6. Howe, M.S.: Acoustics of Fluid Structure Interactions. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  7. Banks, H.T., Smith, R.: Feedback control of noise in a 2-D nonlinear structural acoustic model. Discrete Contin. Dyn. Syst. 1(1), 119–149 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Banks, H.T., Demetriou, M., Smith, R.: H-infinity Mini Max periodic control in a two-dimensional structural acoustic model with piezoceramic actuators. IEEE Trans. Autom. Control 41(7), 943–959 (1996)

    Article  MATH  Google Scholar 

  9. Fahroo, F., Wang, C.: A new model for acoustic-structure interaction and its exponential stability. Quart. Appl. Math. 57(1), 157–179 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bucci, F., Chueshov, I., Lasiecka, I.: Global attractors for a composite system of nonlinear wave and plate equations. Commun. Pure Appl. Anal. 6(1), 113–140 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lasiecka, I.: Mathematical Control Theory of Coupled PDEs. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  12. Avalos, G., Lasiecka, I.: Exact controllability of structural acoustic interactions. J. Math. Pures Appl. 82(8), 1047–1073 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Avalos, G., Toundykov, D.: Boundary stabilization of structural acoustic interactions with interface on a Reissner–Mindlin plate. Nonlinear Anal. Real World Appl. 12(6), 2985–3013 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Liu, Y., Mohsin, B., Hajaiej, H., Yao, P.-F., Chen, G.: Exact controllability of structural interactions with variable coefficients. SICON 54(4), 2132–2153 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Varlamov, V.: Existence and uniqueness of a solution to the Cauchy problem for the damped Boussinesq equation. Math. Methods Appl. Sci. 19(8), 639–649 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yue, L.: Instability of solutions to a generalised Boussinesq equation. SIAM H. Math. Anal. 26(6), 1527–1546 (1995)

    Article  MATH  Google Scholar 

  17. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507–533 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Bucci, F., Toundykov, D.: Finite-dimensional attractor for a composite system of wave/plate equations with localized damping. Nonlinearity 23(9), 2271–2306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lagnese, J.: Boundary Stabilization of Thin Plates. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  20. Lagnese, J., Lions, J.L.: Modeling. Masson, Analysis and Control of Thin Plates. Collection RMA (1988)

    Google Scholar 

  21. Chueshov, I., Lasiecka, I.: On the attractor for \(2D\)-Kirshhoff–Boussinesq model with supercritical nonlinearity. Commun. Partial Differ. Equ. 36, 67–99 (2011)

    Article  MATH  Google Scholar 

  22. Feng, B., Ma, T.F., Monteiro, R.N., Raposo, C.A.: Dynamics of laminated Timoshenko beams. J. Dyn. Differ. Equ. 30(4), 1489–1507 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaltenbacher, B.: Mathematics of nonlinear acoustics. Evol. Equ. Control Theory 4(4), 447–491 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lasiecka, I., Rodrigues, J.H.: Weak and strong semigroups in structural acoustic Kirchhoff–Boussinesq interactions with boundary feedback. J. Differ. Equa. 298, 387–429 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lasiecka, I., Ma, T.F., Monteiro, R.N.: Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation. Trans. Am. Math. Soc. 371(11), 8051–8096 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng, H., Guo, B.-Z.: On stability equivalence between dynamic output feedback and static output feedback for a class of second order infinite-dimensional systems SICON, vol 53, nr 4 (2015)

  27. Ruiz, A.: Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures Appl. 71, 455–467 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Yang, F., Yao, P., Chen, G.: Boundary controllability of structural acoustic systems with variable coefficients and curved walls. Math. Control Signals Syst. 30(1), Art. 5, 28 pp (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peng, Q., Zhang, Z.: Global attractor for a coupled wave and plate equation with nonlocal damping on Riemanian manifold. Appl. Math. Optim. (2023). https://doi.org/10.1007/s00245-023-09998-w

    Article  Google Scholar 

  30. Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative wave equations with unobserved Neumann B.C. global uniqueness and observability in one shot. In: Differential Geometric Methods in the Control of PDE, Contemprary Mathematics, vol. 268, pp. 227–325, AMS (2000)

  31. Lasiecka, I.: Boundary stabilization of a three dimensional structural acoustic model. J. Math. Pures Appl. 78, 203–322 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Daniels, I., Lebiedzik, C.: Existence and uniqueness of a structural acoustic model involving a nonlinear shell. Discrete Contin. Dyn. Syst. l 1(2), 243–252 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Tataru, D.: On the regularity of boundary traces for the wave equation. Ann Scuola Normale Superiore, Pisa CL SCI 26, 185–206 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Lasiecka, I., Lebiedzik, C.: Asymptotic behaviour of nonlinear structural acoustic interactions with thermal effects on the interface. Nonlinear Anal. 49, 703–735 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chueshov, I., Eller, M., Lasiecka, I.: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. Partial Differ. Equ. 27(9 &10), 1901–1951 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chueshov, I., Lasiecka, I.: Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping. J. Differ. Equa. 233, 42–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chueshov, I., Lasiecka, I.: Attractors for second order evolution equations with a nonlinear damping. J. Dyn. Differ. Equ. 16(2), 469–512 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Feireisl, E.: Attractors for wave equation with nonlinear dissipation and critical exponents. C.R. Acad. Sci. Paris, Ser. I 315, 551–555 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Toundykov, D.: Optimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponent source terms under mixed boundary conditions. Nonlinear Anal. 67, 512–544 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and PhysicsApplied Mathematical Sciences, vol. 68. Springer, Berlin (1997)

    Book  Google Scholar 

  41. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. North Holland, Amsterdam (1992)

    MATH  Google Scholar 

  42. Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics. Springer, New York (2010)

    Book  MATH  Google Scholar 

  43. Kaltenbacher, B.: Some aspects in nonlinear acoustics: structure-acoustic coupling and shape optimization. In: Mathematical theory of evolutionary fluid-flow structure interactions, pp. 269–307, Oberwolfach Semin, 48, Birkhäuser/Springer, Cham (2018)

  44. Bucci, F., Chueshov, I.: Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete Contin. Dyn. Syst. 22(3), 557–586 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Becklin, A., Rammaha, M., Mohammad, A.: Hadamard well-posedness for a structure acoustic model with a supercritical source and damping terms. Evol. Equ. Control Theory 10(4), 797–836 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. Feng, N., Yang, Z.: Well-posedness and attractor on the 2D Kirchhoff-Boussinesq models. Nonlinear Anal. 196, 111803, 29 p (2020)

  47. Li, J., Chai, S.: Uniform decay rates for a variable coefficients structural acoustic model with curved interface on a shallow shell. Appl. Math. Optim. (2023). https://doi.org/10.1007/s00245-023-09968-2

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu, Y., Yao, P.-F.: Energy decay rate of the wave equations on Riemannian manifolds with critical potential. Appl. Math. Optim. 78(1), 61–101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, Z., Feng, N., Li, Y.: Robust attractors for a Kirchhoff-Boussinesq type equation. Evol. Equ. Control Theory 9(2), 469–486 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang, Z., Ding, P., Liu, X.: Attractors and their stability on Boussinesq type equations with gentle dissipation. Commun. Pure Appl. Anal. 18(2), 911–930 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zelati, M.C.: Global and exponential attractors for the singularly perturbed extensible beam. DCDS 25, 1041–1060 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ma, T.F., Huertas, S., Paulo, N.: Attractors for semilinear wave equations with localized damping and external forces. Commun. Pure Appl. Anal. 19(4), 2219–2233 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Chueshov, I., Lasiecka, I., Toundykov, D.: Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete Contin. Dyn. Syst. 20(3), 459–509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Chueshov, I., Lasiecka, I., Toundykov, D.: Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent. J. Dyn. Differ. Equ. 21(2), 269–314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sakamoto, R.: Hyperbolic Boundary Value Problems. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  56. Moise, I., Rosa, R.A., Wang, X.: Attractors for noncompact nonautonomous systems via energy equations. Discrete Contin. Dyn. Syst. 10, 473–496 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  57. Hale, J.K.: Asymptotoc Behavior of Dissipative Systems. Mathematical Surveys andMonographs. AMS, Providence, RI (1988)

    Google Scholar 

  58. Ladyzhenskaya, O.: Attractors of Semigroups and Evolution Equations. Cambridge University Press, Cambridge, Lezioni Lincee (1991)

  59. Lasiecka, I., Lebiedzik, C.: Decay rates of interactive hyperbolic–parabolic PDE models with thermal effects on the interface. Appl. Math. Optim. 42, 127–167 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  60. Simon, J.: Compact sets in the space Lp(0, T;B). Annali di Matematica Pura ed Applicata, Ser. 4(148), 65–96 (1987)

    MATH  Google Scholar 

  61. Chueshov, I.: Dynamics of Quasi-Stable Dissipative Systems. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

Download references

Funding

NSF [National Science Foundation]- DMS-2205508

Author information

Authors and Affiliations

Authors

Contributions

Both authors have contributed to the writing of the manuscript.

Corresponding author

Correspondence to Irena Lasiecka.

Ethics declarations

Conflict of interest

None.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasiecka, I., Rodrigues, J.H. On weak/Strong Attractor for a 3-D Structural-Acoustic Interaction with Kirchhoff–Boussinesq Elastic Wall Subject to Restricted Boundary Dissipation. J Dyn Diff Equat (2023). https://doi.org/10.1007/s10884-023-10325-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10325-8

Keywords

Mathematics Subject Classification

Navigation