Skip to main content
Log in

An Optimal Halanay Inequality and Decay Rate of Solutions to Some Classes of Nonlocal Functional Differential Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this work, we prove a nonlocal Halanay inequality with an exact decay rate. This enables us to analyze behavior of solutions to some classes of nonlocal ODEs and PDEs involving unbounded delays. The obtained results extend and improve the previous ones proved for fractional differential equations and other nonlocal subdiffusion equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abadias, L., Alvarez, E.: Uniform stability for fractional Cauchy problems and applications. Topol. Methods Nonlinear Anal. 52(2), 707–728 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, R., Hristova, S., O’Regan, D.: A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Fract. Calc. Appl. Anal. 19(2), 290–318 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anh, N.T., Ke, T.D.: Decay integral solutions for neutral fractional differential equations with infinite delays. Math. Methods Appl. Sci. 38, 1601–1622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anh, N.T., Ke, T.D., Quan, N.N.: Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays. Discrete Contin. Dyn. Syst. Ser. B 21, 3637–3654 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandibur, O., Kaslik, E.: Stability analysis of multi-term fractional-differential equations with three fractional derivatives. J. Math. Anal. Appl. 495(2), 124751 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clément, Ph., Nohel, J.A.: Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels. SIAM J. Math. Anal. 12, 514–535 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cong, N.D., Tuan, H.T., Trinh, H.: On asymptotic properties of solutions to fractional differential equations. J. Math. Anal. Appl. 484(2), 123759 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cong, N.D., Son, D.T., Siegmund, S., Tuan, H.T.: An instability theorem for nonlinear fractional differential systems. Discrete Contin. Dyn. Syst. Ser. B 22(8), 3079–3090 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Emamirad, H., Rougirel, A.: Feynman path formula for the time fractional Schrödinger equation. Discrete Contin. Dyn. Syst. Ser. S 13(12), 3391–3400 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Emamirad, H., Rougirel, A.: Time-fractional Schrödinger equation. J. Evol. Equ. 20(1), 279–293 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erneux, T.: Applied Delay Differential Equations. Springer, New York (2009)

    MATH  Google Scholar 

  12. Grande, R.: Space-time fractional nonlinear Schrödinger equation. SIAM J. Math. Anal. 51(5), 4172–4212 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hien, L.V., Phat, V.N., Trinh, H.: New generalized Halanay inequalities with applications to stability of nonlinear non-autonomous time-delay systems. Nonlinear Dyn. 82, 563–575 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory: With Applications to Schrödinger Operators. Springer, New York (1996)

    Book  MATH  Google Scholar 

  15. Kato, T., McLeod, J.B.: The functional-differential equation \(y^{\prime }(x) = ay(qx)+by(x)\). Bull. Am. Math. Soc. 77, 891–937 (1971)

    MATH  Google Scholar 

  16. Ke, T.D., Lan, D.: Fixed point approach for weakly asymptotic stability of fractional differential inclusions involving impulsive effects. J. Fixed Point Theory Appl. 19, 2185–2208 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ke, T.D., Thang, N.N., Thuy, L.T.P.: Regularity and stability analysis for a class of semilinear nonlocal differential equations in Hilbert spaces. J. Math. Anal. Appl. 483, 123655 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ke, T.D., Thuy, L.T.P.: Dissipativity and stability for semilinear anomalous diffusion equations with delays. Math. Methods Appl. Sci. 43(15), 8449–8465 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolmanovskii, M., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  20. Lee, J.B.: Strichartz estimates for space-time fractional Schrödinger equations. J. Math. Anal. Appl. 487(2), 123999 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, W., Gao, X., Li, R.: Dissipativity and synchronization control of fractional-order memristive neural networks with reaction-diffusion terms. Math. Methods Appl. Sci. 42, 7494–7505 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, B., Lu, W., Chen, T.: Generalized Halanay inequalities and their applications to neural networks with unbounded time-varying delays. IEEE Trans. Neural Netw. 22, 1508–1513 (2011)

    Article  Google Scholar 

  23. Mohamed, A., Raikov, G.D.: On the spectral theory of the Schrödinger operator with electromagnetic potential. Pseudo-differential calculus and mathematical physics, 298–390, Math. Top., 5, Adv. Partial Differential Equations. Akademie Verlag, Berlin (1994)

  24. Nguyen, N.T., Tran, D.K., Nguyen, V.D.: Stability analysis for nonlocal evolution equations involving infinite delays. J. Fixed Point Theory Appl. 25, 22 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pozo, J.C., Vergara, V.: Fundamental solutions and decay of fully non-local problems. Discrete Contin. Dyn. Syst. 39, 639–666 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  27. Saha Ray, S.: A novel method for new solutions of time fractional (1+2)-dimensional nonlinear Schrödinger equation involving dual-power law nonlinearity. Int. J. Modern Phys. B 33(24), 1950280 (2019)

    Article  MATH  Google Scholar 

  28. Samko, S.G., Cardoso, R.P.: Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 57, 3609–3632 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stamova, I.M.: On the Lyapunov theory for functional differential equations of fractional order. Proc. Am. Math. Soc. 144(4), 1581–1593 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stamov, G.T., Stamova, I.M.: Integral manifolds of impulsive fractional functional differential systems. Appl. Math. Lett. 35, 63–66 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Taylor, E.M.: Partial Differential Equations II: Qualitative Studies of Linear Equations. Springer, New York (2013)

    Google Scholar 

  32. Tuan, H.T., Trinh, H.: A linearized stability theorem for nonlinear delay fractional differential equations. IEEE Trans. Automat. Control 63(9), 3180–3186 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tuan, H.T., Trinh, H.: A qualitative theory of time delay nonlinear fractional-order systems. SIAM J. Control. Optim. 58(3), 1491–1518 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thi Thu Huong, N., Nhu Thang, N., Dinh Ke, T.: An improved fractional Halanay inequality with distributed delays. Math. Methods Appl. Sci. (2023). https://doi.org/10.1002/mma.9611

    Article  Google Scholar 

  35. Velmurugan, G., Rakkiyappan, R., Vembarasan, V., Cao, J., Alsaedi, A.: Dissipativity and stability analysis of fractional-order complex-valued neural networks with time delay. Neural Netw. 86, 42–53 (2017)

    Article  MATH  Google Scholar 

  36. Vergara, V., Zacher, R.: Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods. SIAM J. Math. Anal. 47, 210–239 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, D., Xiao, A., Liu, H.: Dissipativity and stability analysis for fractional functional differential equations. Fract. Calc. Appl. Anal. 18(6), 1399–1422 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, D., Zou, J.: Dissipativity and contractivity analysis for fractional functional differential equations and their numerical approximations. SIAM J. Numer. Anal. 57(3), 1445–1470 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, L., Ding, X.: Dissipativity of \(\theta \)-methods for a class of nonlinear neutral delay integro-differential equations. Int. J. Comput. Math. 89, 2029–2046 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wen, L., Yu, Y., Wang, W.: Generalized Halanay inequalities for dissipativity of Volterra functional differential equations. J. Math. Anal. Appl. 347, 169–178 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, Y., Wang, J., Zhang, S., Tohidi, E.: Convergence analysis of space-time Jacobi spectral collocation method for solving time-fractional Schrödinger equations. Appl. Math. Comput. 387, 124489 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Zhou, Y., Peng, L., Huang, Y.: Duhamel’s formula for time-fractional Schrödinger equation. Math. Methods Appl. Sci. 41(17), 8345–8349 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for careful reading the manuscript. The authors would like to thank Hanoi National University of Education for providing a fruitful working environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Nhu Thang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, T.D., Thang, N.N. An Optimal Halanay Inequality and Decay Rate of Solutions to Some Classes of Nonlocal Functional Differential Equations. J Dyn Diff Equat (2023). https://doi.org/10.1007/s10884-023-10323-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10323-w

Keywords

Mathematics Subject Classifications

Navigation