Skip to main content
Log in

Cyclicity of the Limit Periodic Sets for a Singularly Perturbed Leslie–Gower Predator–Prey Model with Prey Harvesting

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting. Our main focus is on the cyclicity of diverse limit periodic sets, including a generic contact point, canard slow–fast cycles, transitory canards, slow–fast cycles with two canard mechanisms, singular slow–fast cycle, etc. We develop new techniques for finding the maximum number of limit cycles produced by slow–fast cycles containing both the generic and degenerate contact point away from the origin (such slow–fast cycles are the transitory canards and cycles with two canard mechanisms). It can be applied not only to the Leslie–Gower predator–prey model, but more general systems as well. The main tool is geometric singular perturbation theory including cylindrical blow-up and the notion of slow divergence integral. We also study dynamics near the origin using non-standard techniques (constructing generalized normal sectors). The uniqueness and stability of a relaxation oscillation is shown using the notion of entry–exit function. Some interesting dynamical phenomena, such as relaxation oscillation and canard explosion, are simulated to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ai, S., Sadhu, S.: The entry–exit theorem and relaxation oscillations in slow–fast planar systems. J. Differ. Equ. 268, 7220–7249 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atabaigi, A., Barati, A.: Relaxation oscillation and canard explosion in a predator–prey system of Holling and Leslie types. Nonlinear Anal. Real World Anal. 36, 139–153 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braaksma, B.: Singular Hopf bifurcation in systems with fast and slow variables. J. Nonlinear Sci. 8, 457–490 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, K.S.: Uniqueness of a limit cycle for a predator–prey system. SIAM J. Math. Anal. 12, 541–548 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Huang, J., Ruan, S., Wang, J.: Bifurcations of invariant tori in predator–prey models with seasonal prey harvesting. SIAM J. Appl. Math. 73, 1876–1905 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dai, Y., Zhao, Y., Sang, B.: Four limit cycles in a predator–prey system of Leslie type with generalized Holling type III functional response. Nonlinear Anal. Real World Anal. 50, 218–239 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Maesschalck, P.: Planar canards with transcritical intersections. Acta. Appl. Math. 137, 159–184 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Maesschalck, P., Doan, T.S., Wynen, J.: Intrinsic determination of the criticality of a slow–fast Hopf bifurcation. J. Dyn. Differ. Equ. 33, 2253–2269 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Maesschalck, P., Dumortier, F.: Canard cycles in the presence of slow dynamics with singularities. Proc. R. Soc. Edinb. Sect. A 138, 265–299 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Maesschalck, P., Dumortier, F., Roussarie, R.: Cyclicity of common slow–fast cycles. Indag. Math. 22, 165–206 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Maesschalck, P., Schecter, S.: The entry–exit function and geometric singular perturbation theory. J. Differ. Equ. 260, 6697–6715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dumortier, F.: Slow divergence integral and balanced canard solutions. Qual. Theory Dyn. Syst. 10, 65–85 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dumortier, F., Roussarie, R.: Birth of canard cycles. Discrete Contin. Dyn. Syst. Ser. S 2, 723–781 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Dumortier, F., Roussarie, R.: Canard cycles and center manifolds. Men. Am. Math. Soc. 121, 1–100 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Dumortier, F., Roussarie, R.: Multiple canard cycles in generalized Liénard system. J. Differ. Equ. 174, 1–29 (2001)

    Article  MATH  Google Scholar 

  16. Etoua, R.M., Rousseau, C.: Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type III. J. Differ. Equ. 249(9), 2316–2356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fenichel, N.: Persistence and smoothness of invariant manifold for flows. Indiana Univ. Math. J. 11, 193–226 (1971/1972)

  19. Freedman, H.I., Mathsen, R.M.: Persistence in predator–prey systems with ratio-dependent predator influence. Bull. Math. Biol. 55, 817–827 (1993)

    Article  MATH  Google Scholar 

  20. Ghazaryan, A., Manukian, V., Schecter, S.: Travelling waves in the Holling–Tanner model with weak diffusion. Proc. R. Soc. Lond. Ser. A 17, 788–822 (2018)

    MATH  Google Scholar 

  21. Gong, Y., Huang, J.: Bogdanov–Takens bifurcation in a Leslie–Gower predator–prey model with prey harvesting. Acta Math. Appl. Sin. Engl. Ser. 30, 239–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gupta, R.P., Banerjee, M., Chandra, P.: Bifurcation analysis and control of Leslie–Grower predator–prey model with Michaelis–Menten type prey-harvesting. Differ. Equ. Dyn. Syst. 20, 339–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomolog. Soc. Can. 97, 5–60 (1965)

    Article  Google Scholar 

  24. Hsu, S.B., Huang, T.W.: Global stability for a class of predator–prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, J., Ruan, S., Song, J.: Bifurcations in a predator–prey system of Leslie type with generalized Holling III functional response. J. Differ. Equ. 257, 1721–1752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, J., Liu, S., Ruan, S., Zhang, X.: Bogdanov–Takens bifurcation of codimension 3 in a predator–prey model with constant-yield predator harvesting. Commun. Pure Appl. Anal. 15, 1053–1067 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Huzak, R., De Maesschalck, P., Dumortier, F.: Limit cycles in slow–fast codimension 3 saddle and elliptic bifurcations. J. Differ. Equ. 255, 4012–4051 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huzak, R., De Maesschalck, P., Dumortier, F.: Primary birth of canard cycle in slow–fast codimension 3 elliptic bifurcations. Commun. Pure Appl. Anal. 13, 2641–2673 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huzak, R.: Normal forms of Liénard type for analytic unfoldings of nilpotent singularities. Proc. Am. Math. Soc. 145, 4325–4336 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huzak, R.: Predator–prey systems with small predator’s death rate. Electron. J. Qual. Theory Differ. Equ. 86, 1–16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kong, L., Zhu, C.: Bogdanov–Takens bifurcations of codimension 2 and 3 in a Leslie–Grower predator–prey model with Michaelis–Menten-type prey harvesting. Math. Methods Appl. Sci. 40, 6715–6731 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic point-fold and canard points in two dimensions. SIAM J. Math. Anal. 32, 286–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Krupa, M., Szmolyan, P.: Extending slow manifolds near transcritical and pitchfork singularities. Nonlinearity 14, 1473–1491 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lan, K., Zhu, C.: Phase portraits, Hopf bifurcation and limit cycles of the Holling–Tanner models for predator–prey interactions. Nonlinear Anal. Real World Anal. 12, 1961–1973 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, C., Zhu, H.: Canard cycles for the predator–prey systems with Holling types of functional response. J. Differ. Equ. 254, 879–910 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, C., Li, J., Ma, Z., Zhu, H.: Canard phenomenon for an SIS epidemic model with nonlinear incidence. J. Math. Anal. Appl. 420, 987–1004 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, Y., Xiao, D.: Bifurcations of a predator–prey system of Holling and Leslie types. Chaos Solitons Fractals 34, 606–620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, W., Xiao, D., Yi, Y.: Relaxation oscillations in a class of predator–prey systems. J. Differ. Equ. 188, 306–331 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ludwig, D., Jones, D.D., Holling, C.S.: Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 47, 315–332 (1978)

    Article  Google Scholar 

  41. May, R.M.: Limit cycle in predator–prey communities. Science 177, 900–902 (1972)

    Article  Google Scholar 

  42. Mischaikow, K., Wolkowicz, G.S.K.: A predator–prey system involving group defense: a connection matrix approach. Nonlinear Anal. 14(11), 955–969 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Perry, C.T., Figueiredo, J., Vaudo, J.J., Hancock, J., Rees, R., Shivji, M.: Comparing length-measurement methods and estimating growth parameters of free-swimming whale sharks (Rhincodon typus) near the South Ari Atoll, Maldives. Mar. Freshw. Res. 69, 1487–1495 (2018)

    Article  Google Scholar 

  44. Ruan, S., Xiao, D.: Global analysis in a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61(4), 1445–1472 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shen, J.: Canard limit cycles and global dynamics in a singularly perturbed predator–prey system with non-monotonic functional response. Nonlinear Anal. Real World Anal. 31, 146–165 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tang, Y., Zhang, W.: Generalized normal sectors and orbits in exceptional direction. Nonlinearity 17, 1407–1426 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, C., Zhang, X.: Canards, heteroclinic and homoclinic orbits for a slow–fast predator–prey model of generalized Holling type III. J. Differ. Equ. 267, 3397–3441 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, C., Zhang, X.: Relaxation oscillations in a slow–fast modified Leslie–Gower model. Appl. Math. Lett. 267, 3397–3441 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Wang, C., Zhang, X.: Stability loss delay and smoothness of the return map in slow–fast systems. SIAM J. Appl. Dyn. Syst. 17, 788–822 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wolkowicz, G.S.K.: Bifurcation analysis of a predator–prey system involving group defence. SIAM J. Appl. Math. 48(3), 592–606 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wrzosek, D.M.: Limit cycles in predator–prey models. Math. Biosci. 98(1), 1–12 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xiao, D., Jennings, L.: Bifurcations of a ratio-dependent predator–prey system with constant rate harvesting. SIAM J. Appl. Math. 65, 737–753 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xiao, D., Ruan, S.: Codimension two bifurcations in a predator–prey system with group defense. Int. J. Bifurc. Chaos 11(8), 2123–2131 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xiao, D., Zhang, Z.: On the uniqueness and nonexistence of limit cycles for predator–prey systems. Nonlinearity 16, 1185–1201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, Z., Ding, T., Dong, Z., Huang, W.: Qualitative Theory of Differential Equation. American Mathematical Society, Providence (1992)

    Google Scholar 

Download references

Acknowledgements

The author Jinhui Yao thanks Prof. Guihua Li for her many helpful comments on this work, and thanks Gang Guo for his simulations in Sect. 6. The author Jinhui Yao would also like to thank Prof. Jicai Huang for his constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Huzak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Huzak, R. Cyclicity of the Limit Periodic Sets for a Singularly Perturbed Leslie–Gower Predator–Prey Model with Prey Harvesting. J Dyn Diff Equat (2022). https://doi.org/10.1007/s10884-022-10242-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-022-10242-2

Keywords

Navigation