Skip to main content
Log in

Propagation Phenomena for Nonlocal Dispersal Equations in Exterior Domains

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the spatial propagation of bistable nonlocal dispersal equations in exterior domains. We first obtain the existence and uniqueness of an entire solution which behaves like a planar traveling wave front for large negative time. Then, when the entire solution comes to the interior domain, the profile of the front will be disturbed. However, the disturbance is local in space for finite time, which means the disturbance disappears as its location is far away from the interior domain. Furthermore, we prove that the solution can gradually recover its planar wave profile uniformly in space and continue to propagate in the same direction for large positive time provided that the interior domain is compact and convex. Our work generalizes the local (Laplace) diffusion results obtained by Berestycki et al. (2009) to the nonlocal dispersal setting by using new known Liouville results and Lipschitz continuity of entire solutions due to Li et al. (2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.: Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, AMS, Providence, Rhode Island (2010)

  2. Bates, P.W., Fife, P.C., Ren, X.F., Wang, X.F.: Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138, 105–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Hamel, F.: Generalized travelling waves for reaction-diffusion equations, Perspectives in nonlinear partial differential equations. Amer. Math. Soc, Contemp. Math. 446, 101–123 (2007)

    Article  MATH  Google Scholar 

  4. Berestycki, H., Hamel, F., Matano, H.: Bistable traveling waves around an obstacle. Comm. Pure Appl. Math. 62, 729–788 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Comm. Pure Appl. Math. 65, 592–648 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouhours, J.: Robustness for a Liouville type theorem in exterior domains. J. Dynam. Differential Equations 27, 297–306 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brasseur, J., Coville, J., Hamel, F., Valdinoci, E.: Liouville type results for a nonlocal obstacle problem. Proc. London Math. Soc. 119, 291–328 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brasseur, J., Coville, J.: A counterexample to the Liouville property of some nonlocal problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 37, 549–579 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brasseur, J., Coville, J.: Propagation phenomena with nonlocal diffusion in presence of an obstacle. J. Dynam. Differential Equations (2021). https://doi.org/10.1007/s10884-021-09988-y

  10. Bu, Z.-H., Guo, H., Wang, Z.-C.: Transition fronts of combustion reaction diffusion equations in \({\mathbb{R}}^N\). J. Dynam. Differential Equations 31, 1987–2015 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Amer. Math. Soc. 132, 2433–2439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cortázar, C., Elgueta, M., Quirós, F., Wolanski, N.: Asymptotic behavior for a nonlocal diffusion equation in domains with holes. Arch. Rational Mech. Anal. 205, 673–697 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cortázar, C., Elgueta, M., Quirós, F., Wolanski, N.: Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains. SIAM. J. Math. Anal. 48, 1549–1574 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cortázar, C., Elgueta, M., Quirós, F., Wolanski, N.: Asymptotic behavior for a nonlocal diffusion equation in exterior domains : The critical two-dimensional case. J. Math. Anal. Appl. 436, 586–610 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chapuisat, G., Grenier, E.: Existence and nonexistence of traveling wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased. Comm. Partial Differential Equations 30, 1805–1816 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chasseigne, E., Chavesb, M., Rossi, J.D.: Asymptotic behavior for nonlocal diffusion equations. J. Math Pures Appl. 86, 271–291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, X.: Existence, uniqueness and asymptotic stablility of traveling waves in nonlocal evolution equations. Adv. Differential Equations 2, 125–160 (1997)

    Article  MathSciNet  Google Scholar 

  18. Coville, J., Dupaigne, L.: On a nonlocal reaction diffusion equation arising in population dynamics. Proc. Roy. Soc. Edinburgh Sect. 137, 727–755 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Coville, J., Dávila, J., Martínez, S.: Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differential Equations 244, 3080–3118 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, J.-S., Morita, Y.: Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete Contin. Dyn. Syst. 12, 193–212 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, H., Hamel, F., Sheng, W.-J.: On the mean speed of bistable transition fronts in unbounded domains. J. Math. Pures Appl. 136, 92–157 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, H., Monobe, H.: V-shaped fronts around an obstacle. Math. Ann. 379, 661–689 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hamel, F., Nadirashvili, N.: Entire solution of the KPP eqution. Comm. Pure Appl. Math. 52, 1255–1276 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamel, F., Nadirashvili, N.: Travelling fronts and entire solutions of the Fisher-KPP equation in \(R^{N}\). Arch. Rational Mech. Anal. 157, 91–163 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hamel, F., Rossi, L.: Transition fronts for the Fisher-KPP equation. Trans. Amer. Math. Soc. 368, 8675–8713 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hamel, F.: Bistable transition fronts in \({\mathbb{R}}^N\). Adv. Math. 289, 279–344 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hoffman, A., Hupkes, H.J., Van Vleck, E.S.: Entire solutions for bistable lattice differential equations with obstacles. Mem. Amer. Math. Soc. 250, (2017)

  28. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de la matière et son application à un problème biologique. Bull. Univ. Etat Mosc. Sr. Int. A 1, 1-26 (1937)

  29. Li, W.-T., Sun, Y.-J., Wang, Z.-C.: Entire solutions in the Fisher-KPP equation with nonlocal dispersal. Nonlinear Anal. Real World Appl. 11, 2302–2313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, W.: Traveling waves in diffusive random media. J. Dynam. Differential Equations 16, 1011–1060 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, W., Shen, Z.: Transition fronts in time heterogeneous and random media of ignition type. J. Differential Equations 262, 454–485 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen, W.: Stability of transition waves and positive entire solutions of Fisher-KPP equations with time and space dependence. Nonlinearity 30, 3466–3491 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sheng, W.-J., Guo, H.: Transition fronts of time periodic bistable reaction-diffusion equations in \({\mathbb{R}}^N\). J. Differential Equations 265, 2191–2242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, Y.-J., Li, W.-T., Wang, Z.-C.: Entire solutions for nonlocal dispersal equations with bistable nonlineartiy. J. Differential Equations 251, 551–581 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, Y.-J., Zhang, L., Li, W.-T., Wang, Z.-C.: Entire solutions in nonlocal monostable equations: asymmetric case. Commun. Pure Appl. Anal. 18, 1049–1072 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, J.-B., Li, W.-T., Dong, F.-D., Qiao, S.-X.: Recent developments on spatial propagation for diffusion equations in shifting environments. Discrete Contin. Dyn. Syst. Ser. B 27, 5101–5127 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Z.-C., Li, W.-T., Ruan, S.: Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays. J. Differential Equations 222, 185–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yagisita, H.: Existence and nonexistence of traveling waves for a nonlocal monostable equation. Publ. Res. Inst. Math. Sci. 45, 925–953 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yagisita, H.: Existence of traveling wave solutions for a nonlocal bistable equation:an abstract approach. Publ. Res. Inst. Math. Sci. 45, 955–979 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, G.-B., Zhao, X.-Q.: Propagation phenomena for a two-species Lotka-Volterra strong competition system with nonlocal dispersal. Calc. Var. Partial Differential Equations 59, (2020) Paper No.10, 34pp

  42. Zhang, L., Li, W.-T., Wang, Z.-C.: Entire solution in an ignition nonlocal dispersal equation: asymmetric kernel. Sci. China Math. 60, 1791–1804 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, L., Li, W.-T., Wang, Z.-C., Sun, Y.-J.: Entire solutions in nonlocal bistable equations: asymmetric case. Acta Math. Sin. 35, 1771–1794 (2019)

    Article  MATH  Google Scholar 

  44. Zlatoš, A.: Generalized traveling waves in disordered media: existence, uniqueness, and stability. Arch. Ration. Mech. Anal. 208, 447–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zlatoš, A.: Transition fronts in inhomogeneous Fisher-KPP reaction-diffusion equations. J. Math. Pures Appl. 98, 89–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee for his/her careful reading and valuable suggestions which led to an improvement of our original manuscript. When this paper is revised, we find that Brasseur and Coville [9] also considered the obstacle problem and they have cited our work. Research of W.-T. Li was partially supported by NSF of China (11731005) and NSF of Gansu (21JR7RA537). Research of J.-W. Sun was partially supported by FRFCU (lzujbky-2021-52) and NSF of Gansu (21JR7RA535).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Tong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submitted to JDDE on August 7, 2019.

Appendix

Appendix

1.1 Proof of Proposition 3.2

In this subsection we intend to show the results of Proposition 3.2. For convenience we define the operator \({\mathcal {L}}\) as follows

$$\begin{aligned} {\mathcal {L}}\omega (x,t)=\omega _t(x,t)-\int _\Omega J(x-y)[\omega (y,t)-\omega (x,t)]dy-f(\omega (x,t)). \end{aligned}$$

We further show that \(W^-(x,t)\) is a sub-solution. A straightforward computation shows that

$$\begin{aligned}&{\mathcal {L}}W^-(x,t)\\&\quad =\left\{ \begin{aligned}&-\int _\Omega J(x-y)W^-(y,t)dy ,\qquad x_1<0, \\&(c-{\dot{\xi }}(t))[\phi '(x_1+ct-\xi (t))-\phi '(-x_1+ct-\xi (t))]-\int _\Omega J(x-y)[W^-(y,t)\\&\quad -W^-(x,t)]dy-f(\phi (x_1+ct-\xi (t))-\phi (-x_1+ct-\xi (t))),\qquad x_1\ge 0. \end{aligned}\right. \end{aligned}$$

For \(x_1<0\), since \(J(x)\ge 0\) and \(W^-\ge 0\), we have

$$\begin{aligned} {\mathcal {L}}W^-=-\int _\Omega J(x-y)W^-(y,t)dy\le 0. \end{aligned}$$

For \(x_1\ge 0\), in view of that

$$\begin{aligned}&\int _\Omega J(x-y)[W^-(y,t)-W^-(x,t)]dy\\&\quad =\int _{{\mathbb {R}}^N}J(x-y)[W^-(y,t)-W^-(x,t)]dy -\int _K J(x-y)[W^-(y,t)-W^-(x,t)]dy \\&\quad =\int _{{\mathbb {R}}^N\cap \{y_1>0\}} J(x-y)[W^-(y,t)-W^-(x,t)]dy\\&\qquad +\int _{{\mathbb {R}}^N\cap \{y_1<0\}} J(x-y)[W^-(y,t)-W^-(x,t)]dy\\&\qquad -\int _K J(x-y)[W^-(y,t)-W^-(x,t)]dy\\&\quad \ge \int _{{\mathbb {R}}^N}J(x-y)[(\phi (y_1+ct-\xi (t)) -\phi (-y_1+ct-\xi (t)))-(\phi (x_1+ct-\xi (t))\\&\qquad -\phi (-x_1+ct-\xi (t)))]dy-\int _K J(x-y)[W^-(y,t)-W^-(x,t)]dy, \end{aligned}$$

we have

$$\begin{aligned} \begin{aligned} {\mathcal {L}}W^-\le&-{\dot{\xi }}(t)[\phi '(z_+(t))-\phi '(z_-(t))] \\&+f(\phi (z_+(t)))-f(\phi (z_-(t)))-f(\phi (z_+(t))-\phi (z_-(t)))\\&+\int _KJ(x-y)[W^-(y,t)-W^-(x,t)]dy, \end{aligned} \end{aligned}$$

where \(z_+(t)=x_1+ct-\xi (t),~z_-(t)=-x_1+ct-\xi (t)\). Recall that \(K\subset \{x\in {\mathbb {R}}^N\mid x_1\le 0\}\), it follows that

$$\begin{aligned} W^-(y,t)=0 ~\text {for all}~y\in K, \end{aligned}$$

which implies that

$$\begin{aligned} \begin{aligned} {\mathcal {L}}W^-(x,t)\le&-{\dot{\xi }}(t)[\phi '(z_+(t))-\phi '(z_-(t))] \\&+f(\phi (z_+(t)))-f(\phi (z_-(t)))-f(\phi (z_+(t))-\phi (z_-(t))). \end{aligned} \end{aligned}$$

Now we go further to show \({\mathcal {L}}W^-\le 0\) in two subcases.

Case A: \(0<x_1<-ct+\xi (t)\).

In this case the following lemma holds.

Lemma 6.1

Suppose that (F) holds. Let \((\phi ,c)\) be the unique solution of (1.4) and \(\phi ''(\xi )\ge 0\) for \(\xi \le 0\). Then there exists \(k_3>0\) such that

$$\begin{aligned} \phi '(\xi _1)-\phi '(\xi _2)\ge k_3[\phi (\xi _1)-\phi (\xi _2)] \end{aligned}$$
(6.1)

for \(\xi _2<\xi _1<0\).

Proof

It follows from (1.6) that there exists some \({\mathfrak {c}}>0\) such that

$$\begin{aligned} \frac{\phi '(\xi _2)}{\phi '(\xi _1)}\le {\mathfrak {c}}e^{\lambda (\xi _2-\xi _1)}. \end{aligned}$$

Then one can choose \(M'>\frac{\ln 2{\mathfrak {c}}}{\lambda }\) and \((\xi _1,\xi _2)\in {\mathbb {R}}^2\) with \(\xi _1-M'<\xi _2<\xi _1<0\) such that

$$\begin{aligned} \frac{\phi '(\xi _2)}{\phi '(\xi _1)}\le {\mathfrak {c}}e^{-\lambda M'}\le \frac{1}{2}. \end{aligned}$$

If \(\xi _1-M'<\xi _2<\xi _1<0\), then we have

$$\begin{aligned} \phi '(\xi _1)-\phi '(\xi _2)=\phi ''(\theta ^1)(\xi _1-\xi _2),~\phi (\xi _1)-\phi (\xi _2)=\phi '(\theta ^2)(\xi _1-\xi _2) \end{aligned}$$

for some \((\theta ^1,\theta ^2)\in [\xi _2,\xi _1]^2\) with \(|\theta ^1-\theta ^2|<M'.\) This and the facts \(\phi ''(\xi )\ge 0\) for \(\xi \le 0\) and \(\phi '(\psi )>0\) for all \(\psi \in {\mathbb {R}}\) imply that (6.1) holds true for \(\xi _1-M'<\xi _2<\xi _1<0\).

When \(\xi _2+M'<\xi _1<0\), it follows that

$$\begin{aligned} \phi '(\xi _2)\le \frac{1}{2}\phi '(\xi _1). \end{aligned}$$

This and the inequalities in (1.5) and (1.6) yield

$$\begin{aligned} \phi '(\xi _1)-\phi '(\xi _2)\ge \frac{1}{2}\phi '(\xi _1)\ge k_3\phi (\xi _1)\ge k_3[\phi (\xi _1)-\phi (\xi _2)]. \end{aligned}$$

Thus we finish the proof. \(\square \)

Now we are ready to show \({\mathcal {L}}W^-(x,t)\le 0\). By Lemma 6.1, we have

$$\begin{aligned} {\mathcal {L}}W^-(x,t)\le&-{\dot{\xi }}(t)(\phi '(z_+(t))-\phi '(z_-(t)))+L_f\phi (z_-(t)) (\phi (z_+(t))-\phi (z_-(t)))\\ \le&\left[ -Mk_3e^{\lambda _0(ct+\xi (t))}+L_f\phi (z_-(t))\right] [\phi (z_+(t))-\phi (z_-(t))]\\ \le&\left[ L_f\beta _0e^{\lambda (-x_1+ct-\xi (t))}-Mk_3e^{\lambda _0(ct+\xi (t))}\right] [\phi (z_+(t))-\phi (z_-(t))]\\ \le&e^{\lambda _0(ct+\xi (t))}\left[ L_f\beta _0e^{(\lambda -\lambda _0)(ct+\xi (t))-2\lambda \xi (t)} -Mk_3\right] [\phi (z_+(t))-\phi (z_-(t))]\\ \le&(L_f\beta _0-Mk_3)[\phi (z_+(t))-\phi (z_-(t))]\\ \le&0. \end{aligned}$$

The last inequality holds provided that \(M\ge \frac{L_f\beta _0}{k_3}\).

Case B: \(x_1\ge -ct+\xi (t)\).

A direct calculation gives that

$$\begin{aligned} \begin{aligned} {\mathcal {L}}W^-(x,t)\le&-Me^{\lambda _0(ct+\xi (t))}[\phi '(z_+(t))-\phi '(z_-(t))] +L_f\phi (z_-(t))[\phi (z_+(t))-\phi (z_-(t))]\\ \le&L_f\phi (z_-(t))-Me^{\lambda _0(ct-\xi (t))+2\lambda _0\xi (t)}[\phi '(z_+(t))-\phi '(z_-(t))]\\ \le&e^{-\lambda x_1+\lambda _0(ct-\xi (t))+2\lambda _0\xi (t)}\bigg [L_f\beta _0e^{(\lambda -\lambda _0)(ct-\xi (t)) -2\lambda _0\xi (t)}\\&-M\left( \gamma _1e^{(\lambda -\mu )x_1-\mu (ct-\xi (t))} -\delta _0e^{\lambda (ct-\xi (t))}\right) \bigg ]\\ \le&e^{-\lambda x_1+\lambda _0(ct-\xi (t))+2\lambda _0\xi (t)}\left[ L_f\beta _0 -M\left( \gamma _1e^{(\lambda -\mu )x_1-\mu (ct-\xi (t))} -\delta _0e^{\lambda (ct-\xi (t))}\right) \right] . \end{aligned} \end{aligned}$$

If \(\lambda \ge \mu \), then

$$\begin{aligned} \begin{aligned} {\mathcal {L}}W^-(x,t)\le&e^{-\lambda x_1+\lambda _0(ct-\xi (t))+2\lambda _0\xi (t)}\left[ L_f\beta _0 -M\left( \gamma _1e^{-\mu (ct-\xi (t))} -\delta _0e^{\lambda (ct-\xi (t))}\right) \right] \\ \le&0 \end{aligned} \end{aligned}$$

for \(ct-\xi (t)\ll -1\) and \(M>1\) is sufficiently large.

When \(\lambda <\mu \), which means \(|f'(1)-f'(0)|>0\), there holds

$$\begin{aligned}&f(\phi (z_+(t))))-f(\phi (z_-(t)))-f(\phi (z_+(t)))-\phi (z_-(t))))\\&\quad =f'(\phi (z_+(t)))\phi (z_-(t)))-o(\phi ^2(z_-(t))))-f'(\phi (z_-(t)))) \phi (z_-(t)))+o(\phi ^2(z_-(t))))\\&\quad \le -k_4\phi (z_-(t)) \end{aligned}$$

for \(x_1+ct-\xi (t)>L_2>0\) with \(L_2\) being large enough, where \(0<k_4<\frac{1}{2}|f'(1)-f'(0)|\). The inequality above follows from that \(f'(\phi (z_+(t)))\rightarrow f'(1)\) and \(f'(\phi (z_-(t)))\rightarrow f'(0)\) as \(L_2\rightarrow +\infty \). Then

$$\begin{aligned} \begin{aligned} {\mathcal {L}}W^-(x,t)\le&Me^{\lambda _0(ct+\xi (t))}\phi '(z_-(t))-k_4\phi (z_-(t))\\ \le&Me^{\lambda _0(ct+\xi (t))}\delta _0e^{\lambda (-x_1+ct-\xi (t))}-k_4\alpha _0e^{\lambda (-x_1+ct-\xi (t))}\\ \le&e^{\lambda (-x_1+ct-\xi (t))}\left( Me^{\lambda _0(ct+\xi (t))}-k_4\alpha _0\right) \\ \le&0, \end{aligned} \end{aligned}$$

provided that \(ct+\xi (t)\ll -1\).

In addition, for \(0<x_1+ct-\xi (t)<L_2\), there holds

$$\begin{aligned} \begin{aligned} {\mathcal {L}}W^-(x,t)\le&e^{-\lambda x_1+\lambda _0(ct-\xi (t))+2\lambda _0\xi (t)}\bigg [L_f\beta _0e^{(\lambda -\lambda _0)(ct-\xi (t)) -2\lambda _0\xi (t)}\\&-M\left( \gamma _1e^{(\lambda -\mu )x_1-\mu (ct-\xi (t))} -\delta _0e^{\lambda (ct-\xi (t))}\right) \bigg ]\\ \le&e^{-\lambda x_1+\lambda _0(ct-\xi (t))+2\lambda _0\xi (t)}\Big [L_f\beta _0 -M\left( \gamma _1e^{(\lambda -\mu )L_2}e^{-\lambda (ct-\xi (t))} -\delta _0e^{\lambda (ct-\xi (t))}\right) \Big ]. \end{aligned} \end{aligned}$$

Since \(ct-\xi (t)\ll -1\) and \(M\gg 1\), we have \({\mathcal {L}}W^-(x,t)\le 0\).

Next, we show the \(W^+(x,t)\) is a super-solution. A straightforward computation shows that

$$\begin{aligned} {\mathcal {L}}W^+(x,t)=\left\{ \begin{aligned}&2(c+{\dot{\xi }}(t))\phi '(x_1+ct)-f(2\phi (ct+\xi (t)))\\&-\int _\Omega J(x-y)[W^+(y,t) -W^+(x,t)]dy,~x_1<0, \\&(c+{\dot{\xi }}(t))[\phi '(x_1+ct+\xi (t))+\phi '(-x_1+ct+\xi (t))]\\&\quad -\int _\Omega J(x-y)[W^+(y,t)-W^+(x,t)]dy-f(\phi (x_1+ct+\xi (t))\\&\quad +\phi (-x_1+ct+\xi (t))),~ x_1>0. \end{aligned}\right. \end{aligned}$$

When \(x_1\ge 0\), denote

$$\begin{aligned} \Gamma ^{+}=\{x\in {\mathbb {R}}^N\mid y_1>0\},~\Gamma ^-=\{x\in {\mathbb {R}}^N\mid y_1\le 0\}. \end{aligned}$$

In view of that \(K\subset {\mathbb {R}}^N\setminus \)supp\((J)\cap \{x\in {\mathbb {R}}^N:~x_1\le 0\}\), one gets

$$\begin{aligned}&\int _{\Omega }J(x-y)[W^+(y,t)-W^+(x,t)]dy\\&\quad =\int _{\Omega \cap \Gamma ^+}J(x-y)[(\phi (y_1+ct+\xi (t))+\phi (-y_1+ct+\xi (t)))\\&\qquad -(\phi (x_1+ct+\xi (t)+\phi (-x_1+ct+\xi (t))]dy\\&\qquad +\int _{\Omega \cap \Gamma ^-}J(x-y)[2\phi (ct+\xi (t)) -(\phi (x_1+ct+\xi (t))+\phi (-x_1+ct+\xi (t)))]dy\\&\quad =\int _{{\mathbb {R}}^N}J(x-y)[(\phi (y_1+ct+\xi (t))+\phi (-y_1+ct+\xi (t))) -(\phi (x_1+ct+\xi (t))\\&\qquad +\phi (-x_1+ct+\xi (t)))]dy+\int _{\Omega \cap \Gamma ^-}J(x-y)[2\phi (ct+\xi (t)) -(\phi (y_1+ct+\xi (t))\\&\qquad +\phi (-y_1+ct+\xi (t)))]dy\\&\quad =c(\phi '(x_1+ct+\xi (t))+\phi '(-x_1+ct+\xi (t)))-f(\phi (x_1+ct+\xi (t)))\\&\qquad -f(\phi (-x_1+ct+\xi (t)))\\&\qquad +\int _{\Omega \cap \Gamma ^-}J(x-y)[2\phi (ct+\xi (t)) -(\phi (y_1+ct+\xi (t))+\phi (-y_1+ct+\xi (t)))]. \end{aligned}$$

Observe that, if \(x_1>|ct+\xi (t)|>L\), where L is the diameter of the compact support of J, then the integral item of the last equality is equal to 0. Therefore, we obtain

$$\begin{aligned} {\mathcal {L}}W^+(x,t)=&{\dot{\xi }}[\phi '(x_1+ct+\xi (t))+\phi '(-x_1+xt+\xi (t))]+f(\phi (x_1+ct+\xi (t)))\\&+f(\phi (-x_1+ct+\xi (t)))-f(\phi (x_1+ct+\xi (t))+\phi (-x_1+ct+\xi (t)))\\ \ge&{\dot{\xi }}\phi '(x_1+ct+\xi (t))-L_f\phi (x_1+ct+\xi (t))\phi (-x_1+ct+\xi (t))\\ \ge&e^{\lambda _0(ct+\xi (t))}\left( M\gamma _1e^{-\mu (x_1+ct+\xi (t))}-L_f\alpha _0e^{-\lambda x_1} e^{(\lambda -\lambda _0)(ct+\xi (t))}\right) . \end{aligned}$$

If \(\mu \le \lambda \), by choosing \(M\gamma _1\ge L_f\alpha _0\), it is obvious that \({\mathcal {L}}W^+(x,t)\ge 0\) with \(x_1>|ct+\xi (t)|\) being sufficiently large.

For \(\mu >\lambda \), we have \(f'(1)<f'(0)\). Consider the case \(x_1+ct+\xi (t)\ge L_0\gg 1\). Then \(\phi (x_1+ct+\xi (t))\approx 1\) while \(\phi (-x_1+ct+\xi (t))\approx 0\). Furthermore,

$$\begin{aligned}&f(\phi (x_1+ct+\xi (t)))+f(\phi (-x_1+ct+\xi (t)))\\&\qquad -f(\phi (x_1+ct+\xi (t))+\phi (-x_1+ct+\xi (t)))\\&\quad \ge \frac{1}{2}(f'(0)-f'(1))\phi (-x_1+ct+\xi (t))\\&\quad \ge 0, \end{aligned}$$

which implies that \({\mathcal {L}}W^+(x,t)\ge 0\). For the other case \(x_1+ct+\xi (t)\le L_0\), we know

$$\begin{aligned} {\mathcal {L}}W^+(x,t)\ge&e^{\lambda _0(ct+\xi (t))}\left( M\gamma _1e^{-\mu L_0}-L_f\alpha _0e^{-\lambda x_1} e^{(\lambda -\lambda _0)(ct+\xi (t))}\right) . \end{aligned}$$

Since \(\lambda _0<\lambda \), we obtain \({\mathcal {L}}W^+(x,t)\ge 0\) holds provided that \(M\ge \frac{L_f\alpha _0}{\gamma _1}e^{\mu L_0}\).

For the case \(0<x_1<|ct+\xi (t)|\), one can see that

$$\begin{aligned}&\int _{\Omega \cap \Gamma ^-}J(x-y)[2\phi (ct+\xi (t)) -(\phi (y_1+ct+\xi (t))+\phi (-y_1+ct+\xi (t)))]dy \\&\quad =\int _{\Omega \cap \{y_1<ct+\xi (t)\}}J(x-y)[2\phi (ct+\xi (t)) -(\phi (y_1+ct+\xi (t))+\phi (-y_1+ct+\xi (t)))]dy\\&\qquad +\int _{\Omega \cap \{ct+\xi (t)<y_1<0\}}J(x-y)[2\phi (ct+\xi (t)) -(\phi (y_1+ct+\xi (t))+\phi (-y_1+ct+\xi (t)))]dy\\&\quad :=I_1+I_2. \end{aligned}$$

Since \(\phi (ct+\xi (t))\le \frac{\theta }{2}\) for \(ct+\xi (t)\ll -1\), \(\phi (0)\le \theta ,\) and \(\phi '>0\), we get that \(\phi (-y_1+ct+\xi (t))>\theta \ge 2\phi (ct+\xi (t))\) for \(y_1<ct+\xi (t)\). It follows that \(I_1\le 0\). We know that

$$\begin{aligned} \begin{aligned} I_2\le&\int _{\Omega \cap \{ct+\xi (t)<y_1<0\}}J(x-y)C_{\phi }e^{\lambda (ct+\xi (t))} \left( 2-\left( e^{\lambda y_1}+e^{-\lambda y_1}\right) \right) dy\\&+K_\phi e^{(k_{\phi }+\lambda )(ct+\xi (t))}\int _{\Omega \cap \{ct+\xi (t)<y_1<0\}}J(x-y) \left( 2+e^{\lambda y_1}+e^{-\lambda y_1}\right) dy\\ \le&C_0e^{(k_{\phi }+\lambda )(ct+\xi (t))}. \end{aligned} \end{aligned}$$

The first inequality is follows from that there exist two numbers \(K_\phi >0\) and \(k_\phi >0\) such that \(\left| \phi (x_1)-C_{\phi }e^{\lambda x_1}\right| \le K_{\phi }e^{(k_{\phi }+\lambda )x_1}\) for \(x_1\le 0\) which is easy to obtain by (1.5). Then we have

$$\begin{aligned} {\mathcal {L}}W^+\ge&Me^{\lambda _0(ct+\xi (t))}(\phi '(x_1+ct+\xi (t))+\phi '(-x_1+ct+\xi (t))) +f(\phi (x_1+ct+\xi (t)))\\&+f(\phi (-x_1+ct+\xi (t))) -f(\phi (x_1+ct+\xi (t))+\phi (-x_1+ct+\xi (t)))\\&-C_0e^{(k_{\phi }+\lambda )(ct+\xi (t))}\\ \ge&Me^{\lambda _0(ct+\xi (t))}(\phi '(x_1+ct+\xi (t))+\phi '(-x_1+ct+\xi (t)))\\&-L_f\phi (x_1+ct+\xi (t))\phi (-x_1+ct+\xi (t)) -C_0e^{(k_{\phi }+\lambda )(ct+\xi (t))}\\ \ge&e^{(\lambda _0+\lambda )(ct+\xi (t))}\left[ 2M\gamma _0-L_f\beta _0e^{(\lambda -\lambda _0)(ct+\xi (t))} -C_0e^{(k_{\phi }-\lambda _0)(ct+\xi (t))}\right] . \end{aligned}$$

This gives that \({\mathcal {L}}W^+\ge 0\), provided \(2M\alpha _0>L_f\beta _0+C_0\) and \(\lambda _0<\min \{k_{\phi },\lambda \}\).

For \(x_1<0\), we just deal with the case \(-L<x_1<0\) because that for \(x_1\le -L\),

$$\begin{aligned}&\int _\Omega J(x-y)[W^+(y,t)-W^+(x,t)]dy\\&\quad =\int _{\Gamma ^+}J(x-y)[\phi (y_1+ct+\xi (t))+\phi (y_1+ct+\xi (t))-2\phi (ct+\xi (t))]dy=0. \end{aligned}$$

Since \(\phi ''(x)\ge 0\) for \(x\le 0\), we have that

$$\begin{aligned}&\int _\Omega J(x-y)[W^+(y,t)-W^+(x,t)]dy\\&\quad \le c\phi '(ct+\xi (t))-f(\phi (ct+\xi (t)))+\int _{-\infty }^{x_1}J_1(y_1)[\phi (y_1-x_1+ct+\xi (t))\\&\qquad +\phi (x_1-y_1+ct+\xi (t))-2\phi (ct+\xi (t))]dy_1\\&\qquad -\int _{{\mathbb {R}}}J_1(y_1)[\phi (ct+\xi (t)-y_1)-\phi (ct+\xi (t))]dy_1\\&\quad =c\phi '(ct+\xi (t))-f(\phi (ct+\xi (t)))+\int _{-\infty }^{0}J_1(y_1)[\phi (y_1-x_1+ct+\xi (t))\\&\qquad +\phi (x_1-y_1+ct+\xi (t))-2\phi (ct+\xi (t))]dy_1\\&\qquad +\int _{x_1}^0J_1(y_1)[2\phi (ct+\xi (t))-\phi (y_1-x_1+ct+\xi (t))-\phi (x_1-y_1+ct+\xi (t))]\\&\qquad -\int _{-\infty }^0J_1(y_1)[\phi (ct+\xi (t)-y_1)+\phi (ct+\xi (t)+y_1)-2\phi (ct+\xi (t))]dy_1\\&\quad \le c\phi '(ct+\xi (t))-f(\phi (ct+\xi (t)))+C_0e^{(k_{\phi }+\lambda )(ct+\xi (t))}\\&\qquad +\int _{-\infty }^{0}J_1(y_1)[\phi (y_1-x_1+ct+\xi (t))\\&\qquad +\phi (x_1-y_1+ct+\xi (t))-\phi (ct+\xi (t)-y_1)-\phi (ct+\xi (t)+y_1)]dy_1. \end{aligned}$$

Observe that, if \(x_1<0\) then \(\left| \phi (x_1)-C_{\phi }e^{\lambda x_1}\right| \le K_{\phi }e^{(k_{\phi }+\lambda )x_1}\). Thus there is \(C_0>0\) such that

$$\begin{aligned}&\int _{-\infty }^{0}J_1(y_1)[\phi (y_1-x_1+ct+\xi (t))+\phi (x_1-y_1+ct+\xi (t))\\&\qquad -\phi (ct+\xi (t)-y_1)-\phi (ct+\xi (t)+y_1)]dy_1\\&\quad \le C_{\phi }e^{\lambda (ct+\xi (t))}\int _{-\infty }^{0}J_1(y_1)\left[ \left( e^{\lambda (x_1-y_1)} +e^{\lambda (y_1-x_1)}\right) -\left( e^{\lambda y_1}+e^{-\lambda y_1}\right) \right] dy_1\\&\qquad +2K_{\phi }e^{(k_{\phi }+\lambda )(ct+\xi (t))}\int _{-\infty }^{0}J_1(y_1)\bigg [\left( e^{(k_{\phi }+\lambda )(x_1-y_1)} +e^{(k_{\phi }+\lambda )(y_1-x_1)}\right) \\&\qquad -\left( e^{(k_{\phi }+\lambda )y_1}+e^{-(k_{\phi }+\lambda )y_1}\right) \bigg ]dy_1\\&\quad \le C_0e^{(k_{\phi }+\lambda )(ct+\xi (t))}. \end{aligned}$$

The last inequality above holds true, since \(x_1<0\) and \(f(\upsilon )=\upsilon +\frac{1}{\upsilon }\) is monotonically increasing in \(\upsilon \in (1,\infty )\). Then it follows that for \(M\ge \frac{C_0}{\gamma _0}\),

$$\begin{aligned} {\mathcal {L}}W^+\ge&2{\dot{\xi }}(t)\phi '(ct+\xi (t))+f(\phi (ct+\xi (t)))-f(2\phi (ct+\xi (t))) -C_0e^{(k_{\phi }+\lambda )(ct+\xi (t))}\\ \ge&2M\gamma _0e^{(\lambda _0+\lambda )(ct+\xi (t))}-2C_0e^{(k_{\phi }+\lambda )(ct+\xi (t))}\\ =&e^{(k_{\phi }+\lambda )(ct+\xi (t))}(2M\gamma _0-2C_0)\\ \ge&0. \end{aligned}$$

The second inequality follows from that \(f'(s)<0\) in \([\phi (ct+\xi (t)),2\phi (ct+\xi (t))]\) for \(ct+\xi (t)\ll -1\). The proof of Proposition 3.2 has been finished.

1.2 Proof of Lemma 4.2

We know that

$$\begin{aligned} {\mathcal {M}}{\underline{u}}:=&{\underline{u}}_t(x,t)-\int _{{\mathbb {R}}^N}J(x-y)[{\underline{u}}(y,t) -{\underline{u}}(x,t)]dy-f({\underline{u}}(x,t))\\ =&(c-2\epsilon \Vert f'\Vert \delta ^{-1}e^{-\omega (t-t_0)})\phi '+\epsilon \omega e^{-\omega (t-t_0)}\\&-\int _{{\mathbb {R}}^N}J(x-y)[\phi (\xi _-(y,t)) -\phi (\xi _-(x,t))]dy\\&-f(\phi (\xi _-(x,t))-\epsilon e^{-\omega (t-t_0)})\\ =&-2\epsilon \Vert f'\Vert \delta ^{-1}e^{-\omega (t-t_0)}\phi '+\epsilon \omega e^{-\omega (t-t_0)}+f(\phi (\xi _-(x,t)))\\&-f\left( \phi (\xi _-(x,t))-\epsilon e^{-\omega (t-t_0)}\right) . \end{aligned}$$

When \(\xi _-(x,t)\in [-A, A]\), there holds \(\phi '(\xi _-(x,t))\ge \delta \). Therefore,

$$\begin{aligned} {\mathcal {M}}{\underline{u}}\le \epsilon e^{-\omega (t-t_0)}(-2\Vert f'\Vert +\omega +\Vert f'\Vert )\le 0. \end{aligned}$$

For \(|\xi _-(x,t)|\ge A\), we have

$$\begin{aligned} \phi (\xi _-(x,t)),{\underline{u}}(x,t)\in [-\infty ,\eta ]\cup [1-\eta ,+\infty ]. \end{aligned}$$

Then \(f'(s)\le -\omega \) for \(s\in [\phi (\xi _-(xt))-\epsilon e^{-\omega (t-t_0)},\phi (\xi _-(xt))]\). Hence,

$$\begin{aligned} {\mathcal {M}}{\underline{u}}\le \epsilon \omega e^{-\omega (t-t_0)}-\omega \epsilon e^{-\omega (t-t_0)}=0. \end{aligned}$$

For \(t_0\le -T\), one get

$$\begin{aligned} {\underline{u}}(x,t_0)=\phi (x_1+ct)-\epsilon \le u(x,t_0). \end{aligned}$$

Until now, we have show the function \({\underline{u}}\) is a sub-solution to (4.2). Similarly one can show \({\overline{u}}\) is a super-solution to (4.2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, SX., Li, WT. & Sun, JW. Propagation Phenomena for Nonlocal Dispersal Equations in Exterior Domains. J Dyn Diff Equat 35, 1099–1131 (2023). https://doi.org/10.1007/s10884-022-10194-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-022-10194-7

Keywords

Mathematics Subject Classification

Navigation