Skip to main content
Log in

Effective Reduction for a Nonlocal Zakai Stochastic Partial Differential Equation in Data Assimilation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study the effective reduction for a nonlocal stochastic partial differential equation with oscillating coefficients. The nonlocal operator in this stochastic partial differential equation is the generator of non-Gaussian Lévy processes, with either integrable or non-integrable jump kernels. We examine the limiting behavior of this equation as a scaling parameter tends to zero, and derive a reduced (local or nonlocal) effective equation. In particular, this work leads to an effective reduction for a data assimilation system with Lévy noise, by examining the corresponding nonlocal Zakai stochastic partial differential equation. We show that the probability density for the reduced data assimilation system approximates that for the original system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Acevessanchez, P., Schmeiser, C.: Fractional diffusion advection limit of a kinetic model. SIAM J. Math. Anal. 48(4), 2806–2818 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acevessanchez, P., Schmeiser, C.: Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinet. Relat. Models 10(3), 541–551 (2016)

    Article  MathSciNet  Google Scholar 

  3. Acevessanchez, P., Cesbron, L.: Fractional diffusion limit for a fractional Vlasov–Fokker–Planck equation. SIAM J. Math. Anal. 51(1), 469–488 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  5. Bai, L., Cheng, X., Duan, J., Yang, M.: Slow manifold for a nonlocal stochastic evolutionary system with fast and slow components. J. Differ. Equ. 263, 4870–4893 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Springer, New York (2009). https://doi.org/10.1007/978-0-387-76896-0

    Book  MATH  Google Scholar 

  7. Bardi, M., Cesaroni, A., Topp, E.: Cauchy problem and periodic homogenization for nonlocal Hamilton–Jacobi equations with coercive gradient terms. Proc. R. Soc. A Math. Phys. Eng. Sci. 1–32 (2019)

  8. Bensoussan, A.: Nonlinear filtering with homogenization. Int. J. Probab. Stoch. Process. 17, 67–90 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Bensoussan, A., Lions, J.L., Papanicolaou, G.C.: Asymptotic Analysis for Periodic Structures. North-Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  10. Boufoussi, B., Lakhel, E., Dozzi, M.: A Kolmogorov and tightness criterion in modular Besov spaces and an application to a class of Gaussian processes. Stoch. Anal. Appl. 23, 665–685 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L.: Variational problems with free boundaries. Proc. Int. Congress Math. 27, 1161–1163 (1984)

    MathSciNet  Google Scholar 

  12. Cerrai, S., Freidlin, M.: Averaging principle for a class of stochastic reaction–diffusion equations. Probab. Theory Relat. Fields 114, 137–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ditlevsen, P.D.: Observation of \(\alpha \)-stable noise induced millennial climate changes from an ice record. Geophys. Res. Lett. 26, 1441–1444 (1999)

    Article  Google Scholar 

  14. Duan, J., Wang, W.: Effective Dynamics of Stochastic Partial Differential Equations. Elsevier, Amsterdam (2014)

    MATH  Google Scholar 

  15. Duan, J.: An Introduction to Stochastic Dynamics. Cambridge University Press, New York (2015)

    MATH  Google Scholar 

  16. Gawarecki, L., Mandrekar, V.: Stochastic differential equation in infinite dimension. https://doi.org/10.1007/978-3-642-16194-0

  17. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, 2nd edn. Springer, Berlin (2014)

    MATH  Google Scholar 

  18. He, J., Duan, J., Gao, H.: A nonlocal Fokker–Planck equation for non-Gaussian stochastic dynamical systems. Appl. Math. Lett. 49, 1–6 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, Q., Duan, J., Wu, J.L.: Maximum principles for nonlocal parabolic Waldenfels operators. Bull. Math. Sci. (2018). https://doi.org/10.1007/s13373-018-0126-0

    Article  MATH  Google Scholar 

  20. Ichihara, N.: Homogenization for stochastic partial differential equations derived from nonlinear filterings with feedback. J. Math. Soc. Jpn. 57, 593–603 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ichihara, N.: Homogenization problem for stochastic partial differential equations of Zakai type. Stoch. Stoch. Rep. 76, 243–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Imkeller, P., Namachchivaya, N.S., Perkowski, N., Yeong, H.C.: Dimensional reduction in nonlinear filtering: a homogenization approach. Ann. Appl. Probab. 23, 2290–2326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, Y.T., Doering, C.R.: Gene expression dynamics with stochastic bursts: construction and exact results for a coarse-grained model. Phys. Rev. E. 93(2), 022409 (2016)

    Article  MathSciNet  Google Scholar 

  24. Mengesha, T., Scott, J.M.: Asymptotic analysis of a coupled system of nonlocal equations with oscillatory coefficients. In: Analysis of PDEs (2019)

  25. Métivier, M.: Stochastic partial differential equations in infinite dimensional spaces. Quaderni, Scuola normale superiore (1988)

  26. Pardoux, E.: Stochastic partial differential equations and filtering of diffusion processes. Stocha. Int. J. Probab. Stoch. Process. 3, 127–167 (1980)

    MathSciNet  MATH  Google Scholar 

  27. Park, J.H., Sowers, R.B., Namachchivaya, N.S.: Dimensional reduction in nonlinear filtering. Nonlinearity 23(2), 305–324 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pavliotis, G., Stuart, A.: Multiscale Methods. Springer, New York (2008)

    MATH  Google Scholar 

  29. Piatnitski, A., Zhizhina, E.: Periodic homogenization of non-local operators with a convolution type kernel. SIAM J. Math. Anal. 49, 64–81 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qiao, H., Duan, J.: Nonlinear filtering of stochastic dynamical systems with Lévy noises. Adv. Appl. Probab. 47, 902–918 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schwab, R.W.: Periodic homogenization for nonlinear integro-differential equations. SIAM J. Math. Anal. 42(6), 2652–2680 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stewart, H.: B: Generation of analytic semigroups by strongly elliptic operators. Trans. Am. Math. Soc. 199, 141–162 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Y., Cheng, Z., Zhang, X., Chen, X., Duan, J., Li, X.: Data assimilation and parameter estimation for a multiscale stochastic system with alpha-stable Levy noise. J. Stat. Mech. Theory Exp. (2017)

  34. Zhang, Y., Ren, J.: Data assimilation for a multiscale stochastic dynamical system with Gaussian noise. Stoch. Dyn. 19(03), 1950019 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Qiao Huang and Ao Zhang for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meihua Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partly supported by the National Natural Science Foundation of China (NSFC) 11771161, 11971184 and 11771449.

Appendices

Appendix A: Proof of Lemma 1

Proof

Note that \(A^\epsilon \) is the infinitesimal generator of a \(C_0\) semigroup S(t) on H, as known in Stewart [32]. Moreover,

$$\begin{aligned} \begin{aligned}&\int _{0}^{T}\left\| B^\epsilon u^\epsilon _s(\cdot )\right\| _0+\left\| \left( u^\epsilon _s(\cdot )\right) \sigma (\frac{\cdot }{\epsilon })\right\| _0^2ds\\&\quad \le C_2\int _{0}^{T}\left\| \int _{{\mathbb {R}}}c(\frac{\cdot -y}{\epsilon })u^\epsilon _s(y)dy\right\| _0ds\\&\qquad +\, C_2\int _{0}^{T}\left\| u^\epsilon _s(\cdot )\right\| _0ds\left\| \int _{{\mathbb {R}}}c(\frac{\cdot -y}{\epsilon })dy\right\| _0\\&\qquad +\,\int _{0}^{T}\left\| (u^\epsilon _s(\cdot ))^2\sigma (\frac{\cdot }{\epsilon })^2\right\| _0ds. \end{aligned} \end{aligned}$$
(40)

Combined with the uniform estimates in Lemma 4, we conclude that

$$\begin{aligned} \begin{aligned} \left\| \int _{{\mathbb {R}}}c(\frac{\cdot -y}{\epsilon })u^\epsilon _s(y)dy\right\| _0^2&\le \int _{{\mathbb {R}}}c(y)dy\int _{{\mathbb {R}}}c(q)dq\int _{{\mathbb {R}}}u^\epsilon _s(x+\epsilon y)u^\epsilon _s(x+\epsilon q)dx\\&\le a_1^2\left\| u_s^\epsilon \right\| ^2_0<\infty . \end{aligned} \end{aligned}$$

So the right hand side of (40) is finite. Hence the equation (1) has a solution given by

$$\begin{aligned} u^\epsilon _t(x)\!=\!S(t)u_0(x)\!+\!\int _0^tS(t\!-\!s)B^\epsilon u^\epsilon _s(x)ds\!+\!\int _0^t S(t\!-\!s)u^\epsilon _s(x)\sigma \left( \frac{x}{\epsilon }\right) dW_s. \end{aligned}$$

The mild solution of the equation is unique (Theorem 3.5 of [16]). \(\square \)

Appendix B: Uniqueness of \(h_{1}(\eta ) \;\text {and} \;h_{2}(\eta )\)

Proof

We define the bilinear form:

$$\begin{aligned} \begin{aligned} a[u,v]&=\int _{{\mathbb {T}}}\left[ \int _{{\mathbb {R}}}c(\eta -q)\big (\lambda ^m(q)u(q)-\lambda ^m(\eta )u(\eta )\big ) dq\right] v(\eta )d\eta \\&\quad +\int _{{\mathbb {T}}}(a^m(\eta )u(\eta ))''v(\eta )d\eta -\int _{{\mathbb {T}}}(b^m(\eta )u(\eta ))'v(\eta )d\eta . \end{aligned} \end{aligned}$$

for every \(u, v\in H^1.\)

At first, we verify the conditions of the Fredholm alternative theorem. We want to show that there exist positive constants \(\nu ,\mu ,\) such that:

$$\begin{aligned} \left| a[u,v]\right| \le \nu \Vert u\Vert _1\Vert v\Vert _1, \end{aligned}$$

and

$$\begin{aligned} \frac{\kappa _1}{2}\Vert u\Vert _1^2\le a[u,u]+\mu \Vert u\Vert _0^2, \end{aligned}$$

for every \(u,v\in H^1({\mathbb {T}}).\) Note that

$$\begin{aligned} \begin{aligned} \left| a[u,v]\right|&\le \left| \int _{{\mathbb {T}}}\left[ \int _{{\mathbb {R}}}c(\eta -q)\left( \lambda ^m(q)u(q)-\lambda ^m(\eta )u(\eta )\right) dq \right] v(\eta )d\eta \right| \\&\quad +\left| \int _{{\mathbb {T}}}(a^m(\eta )u(\eta ))''v(\eta )d\eta \right| +\left| \int _{{\mathbb {T}}}(b^m(\eta )u(\eta ))'v(\eta )d\eta \right| . \end{aligned} \end{aligned}$$
(41)

For the first term of (41),

$$\begin{aligned} \begin{aligned}&\left| \int _{{\mathbb {T}}}\left[ \int _{{\mathbb {R}}}c(\eta -q)\lambda ^m(q)u(q)dq\right] v(\eta )d\eta -\int _{{\mathbb {T}}}\left[ \int _{{\mathbb {R}}}c(\eta -q)\lambda ^m(\eta )u(\eta ))dq\right] v(\eta )d\eta \right| \\&\quad \le \left[ \int _{{\mathbb {T}}}\left( \int _{{\mathbb {R}}}c(\eta -q)\lambda ^m(q)u(q)dq\right) ^2 d\eta \right] ^{\frac{1}{2}} \left( \int _{{\mathbb {T}}}v(\eta )^2d\eta \right) ^{\frac{1}{2}}+a_1C_2\int _{{\mathbb {T}}}u(\eta )v(\eta )d\eta .\\ \end{aligned} \end{aligned}$$

In fact,

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {T}}}\left( \int _{{\mathbb {R}}}c(\eta -q)\lambda ^m(q)u(q)dq\right) ^2d\eta \\&\quad =\int _{{\mathbb {T}}}\left( \int _{{\mathbb {R}}}c(\eta -q)\lambda ^m(q)u(q)dq\right) \left( \int _{{\mathbb {R}}}c(\eta -q)\lambda ^m(q)u(q)dq\right) d\eta \\&\quad \le \frac{C^2_2}{\delta ^2}\int _{{\mathbb {R}}}c(q)dq\int _{{\mathbb {R}}}c(q)dq\int _{{\mathbb {T}}}u(\eta +q)u(\eta +q) d\eta \le a_2^2\frac{C^2_2}{\delta ^2}\left\| u\right\| _0^2. \end{aligned} \end{aligned}$$
(42)

Combining with (41), we conclude that

$$\begin{aligned} \left| a[u,v]\right|&\le C_3 \Vert u\Vert _0\Vert v\Vert _0+C_4 (\Vert u\Vert _0\Vert v'\Vert _0 +\Vert u'\Vert _0\Vert v'\Vert _0)+C_5\Vert u\Vert _0\Vert v'\Vert _0 \\&\le \nu \Vert u\Vert _1\Vert v\Vert _1. \end{aligned}$$

We now use the assumptions to infer that

$$\begin{aligned} \begin{aligned} \kappa _1\Vert u'\Vert _0&\le -\int _{{\mathbb {T}}}(a(\eta )u(\eta ))''u(\eta )d\eta =a[u,u]-\int _{{\mathbb {T}}}(b(\eta )u(\eta ))'u(\eta )d\eta \\&\quad +\int _{{\mathbb {T}}}\left[ \int _{{\mathbb {R}}}c(\eta -q)\big (\lambda (q)u(q)-\lambda (\eta )u(\eta )\big )dq\right] u(\eta )d\eta \\ {}&\le a[u,u]+\int _{{\mathbb {T}}}\left( \Vert b\Vert _{\infty }\vert u'\vert \cdot \vert u\vert +C_7\vert u\vert ^2\right) d\eta . \end{aligned} \end{aligned}$$
(43)

Now we make use of the Young’s inequality

$$\begin{aligned} ab\le \delta _1 a^2+\frac{1}{4\delta _1}b^2,\; \text {for }\;\text {every} \;\delta _1>0. \end{aligned}$$

Using this in the second term on the right hand side of (43), we obtain

$$\begin{aligned} \int _{{\mathbb {T}}}\vert u'\vert \cdot \vert u\vert d\eta \le \delta _1 \Vert u'\Vert _0^2+\frac{1}{4\delta _1} \Vert u\Vert _0^2. \end{aligned}$$

We choose \(\delta _1\), so that

$$\begin{aligned} \kappa _1-\Vert b\Vert _{\infty }\delta _1=\frac{\kappa _1}{2}. \end{aligned}$$

Thus

$$\begin{aligned} \frac{\kappa _1}{2}\Vert u'\Vert _0^2\le a[u,u]+\frac{1}{4\delta _1}\Vert b\Vert _{\infty } \Vert u\Vert _0^2+C_7\Vert u\Vert _0^2. \end{aligned}$$

We now add \(\frac{\kappa _1}{2}\Vert u\Vert _0^2\) on the both sides of the preceding inequality to obtain

$$\begin{aligned} \frac{\kappa _1}{2}\Vert u\Vert _1^2\le a[u,u]+\mu \Vert u\Vert _0^2, \end{aligned}$$

with

$$\begin{aligned} \mu =\frac{1}{4\delta _1}\Vert b\Vert _{\infty }+C_7+\frac{\kappa _1}{2}. \end{aligned}$$

Next we consider the resolvent operator

$$\begin{aligned} R_{\left( {\tilde{T}}_m\right) ^*}(\lambda )=\left( ({\tilde{T}}_m)^*+\lambda I\right) ^{-1}, \end{aligned}$$

where I stands for the identity operator and \(\lambda >0\). Note that this operator is compact. For \(\lambda \) sufficiently large, consequently, Fredholm theorem can be used for \(R_{\left( {\tilde{T}}_m\right) ^*}(\lambda )\). From the fact that the Fredholm alternative for \(R_{\left( {\tilde{T}}_m\right) ^*}(\lambda )\) implies the Fredholm alternative for \({\tilde{T}}_m^*,\) Fredholm theorem can be used for \({\tilde{T}}_m^*\) (Lemma 7.11 of [28]). Moreover, it is easy to see that \(Ker \left( {\tilde{T}}_m\right) ^*=\{C\}\), where C is a constant. Then we want to show the solvability condition:

$$\begin{aligned} \int _{{\mathbb {T}}}l(\eta )d\eta =0. \end{aligned}$$
(44)

We take \(z=\eta -q.\) Noting the fact that

$$\begin{aligned} \int _{{\mathbb {R}}}\int _{{\mathbb {T}}}q c(\eta -q)m(\eta )\lambda (\eta )d\eta dq= \int _{{\mathbb {R}}}\int _{{\mathbb {T}}}\eta c(\eta -q)m(q)\lambda (q)d\eta dq, \end{aligned}$$

we infer that

$$\begin{aligned} \begin{aligned} \int _{{\mathbb {T}}}l(\eta )d\eta&=\int _{{\mathbb {R}}}\int _{{\mathbb {T}}}qc(\eta -q)\big (m(\eta )\lambda (\eta )-m(q)\lambda (q)\big )d\eta dq\\&\quad +\,\int _{{\mathbb {T}}}b(\eta )m(\eta )d\eta -\int _{{\mathbb {T}}}2(a(\eta )m(\eta ))'d\eta \\&=\int _{{\mathbb {T}}}\eta \int _{{\mathbb {R}}}c(q-\eta )\big (m(q)\lambda (q)-m(\eta )\lambda (\eta )\big )dqd\eta \\&\quad +\,\int _{{\mathbb {T}}}b(\eta )m(\eta )d\eta -\int _{{\mathbb {T}}}2(a(\eta )m(\eta ))'d\eta \\&=\int _{{\mathbb {T}}}\eta \left[ -(a(\eta )m(\eta ))''+(b(\eta )m(\eta ))'\right] d\eta \\&\quad +\,\int _{{\mathbb {T}}}b(\eta )m(\eta )d\eta -\int _{{\mathbb {T}}}2(a(\eta )m(\eta ))'d\eta \\&=0. \end{aligned} \end{aligned}$$

The solvability condition \(\int _{{\mathbb {T}}}l_1(\eta )d\eta \) will be verified in the “Appendix C”. Thus, the solution \(h_1(\eta )\) and \(h_2(\eta )\) is existence and uniqueness. \(\square \)

Appendix C: Proof of Lemma 11

Proof

Substituting \(\xi _\epsilon \) defined in (24) into \((T^\epsilon )^*\xi _\epsilon :\)

$$\begin{aligned} \begin{aligned} (T^\epsilon )^*(\xi ^\epsilon )(x)&=\frac{1}{\epsilon ^3}\int _{{\mathbb {R}}}c\left( \frac{x-y}{\epsilon }\right) \bigg \{\lambda \left( \frac{y}{\epsilon }\right) m\left( \frac{y}{\epsilon }\right) \left[ \xi (y)\!+\!\epsilon h_{1}\left( \frac{y}{\epsilon }\right) \xi '(y)\!+\!\epsilon ^2 h_2 \left( \frac{y}{\epsilon }\right) \xi ''(y)\right] \\&\quad -\,\lambda \left( \frac{x}{\epsilon }\right) m\left( \frac{x}{\epsilon }\right) \left[ \xi (x)+\epsilon h_{1}\left( \frac{x}{\epsilon }\right) \xi '(x)+\epsilon ^2 h_2 \left( \frac{x}{\epsilon }\right) \xi ''(x)\right] \bigg \}\\&\quad +\,\left\{ a^m\left( \frac{x}{\epsilon }\right) \left[ \xi (x)+\epsilon h_{1}\left( \frac{x}{\epsilon }\right) \xi '(x)+\epsilon ^2 h_2 \left( \frac{x}{\epsilon }\right) \xi ''(x)\right] \right\} ''\\&\quad -\,\frac{1}{\epsilon }\left\{ b^m\left( \frac{x}{\epsilon }\right) \left[ \xi (x)+\epsilon h_{1}\left( \frac{x}{\epsilon }\right) \xi '(x)+\epsilon ^2 h_2 \left( \frac{x}{\epsilon }\right) \xi ''(x)\right] \right\} 'dy. \end{aligned} \end{aligned}$$

First of all, we consider the term \((B^\epsilon )^*(\xi ^\epsilon )(x)\),

$$\begin{aligned} \begin{aligned} (B^\epsilon )^*(\xi ^\epsilon )(x)&=\frac{1}{\epsilon ^2}\int _{{\mathbb {R}}}c(z)\bigg \{\lambda \left( \frac{x}{\epsilon }-z\right) m\left( \frac{x}{\epsilon }-z\right) \Big [\xi (x-\epsilon z)\\&\quad +\,\epsilon h_{1}\left( \frac{x}{\epsilon }-z\right) \xi '(x-\epsilon z) +\epsilon ^2 h_2\left( \frac{x}{\epsilon }-z\right) \xi ''(x-\epsilon z)\Big ]\\&\quad -\,\lambda \left( \frac{x}{\epsilon }\right) m\left( \frac{x}{\epsilon }\right) \left[ \xi (x)+\epsilon h_{1}\left( \frac{x}{\epsilon }\right) \xi '(x)+\epsilon ^2 h_2 \left( \frac{x}{\epsilon }\right) \xi ''(x)\right] \bigg \}dz. \end{aligned} \end{aligned}$$

Using the following identities based on the integral form of remainder term in the Taylor expansion

$$\begin{aligned} \xi (y)=\xi (x)+\int _{0}^{1}\frac{\partial }{\partial t}\xi (x+(y-x)t)dt=\xi (x)+\int _{0}^{1}\xi '(x+(y-x)t)\cdot (y-x)dt, \end{aligned}$$

and

$$\begin{aligned} \xi (y)=\xi (x)+\xi '(x)(y-x)+\int _{0}^{1}\xi ''(x+(y-x)t)(y-x)\cdot (y-x)(1-t)dt, \end{aligned}$$

which is valid for each \(x,y\in {\mathbb {R}}\), we conclude that

$$\begin{aligned} \begin{aligned} (B^\epsilon )^*(\xi ^\epsilon )(x)&= \frac{1}{\epsilon ^2}\int _{{\mathbb {R}}}c(z) \bigg \{\lambda \left( \frac{x}{\epsilon }-z\right) m\left( \frac{x}{\epsilon }-z\right) \bigg [\xi (x)-\epsilon z\xi '(x)\\&\quad +\,\epsilon ^2\int _{0}^{1}\xi ''(x-\epsilon zt)\cdot z^2 (1-t)dt+\epsilon h_{1}\left( \frac{x}{\epsilon }-z\right) \Big (\xi '(x)-\epsilon z\xi ''(x)\\&\quad +\,\epsilon ^2\int _{0}^{1}\xi '''(x-\epsilon zt)\cdot z^2 (1-t)dt\Big )+\epsilon ^2 h_2 \left( \frac{x}{\epsilon }-z\right) \xi ''(x-\epsilon z)\bigg ]\\&\quad -\,\lambda \left( \frac{x}{\epsilon }\right) m\left( \frac{x}{\epsilon }\right) \left[ \xi (x)+\epsilon h_{1}\left( \frac{x}{\epsilon }\right) \xi '(x)+\epsilon ^2 h_2 \left( \frac{x}{\epsilon }\right) \xi ''(x)\right] \bigg \}dz. \end{aligned} \end{aligned}$$

Collecting the equal power terms with \((A^\epsilon )^* \xi ^\epsilon \), we obtain

$$\begin{aligned} \begin{aligned}&(T^\epsilon )^*(\xi ^\epsilon )(x)\\&\quad = \frac{1}{\epsilon ^2}\xi (x)\bigg \{\int _{{\mathbb {R}}}c(z)\bigg [\lambda \big (\frac{x}{\epsilon }-z\big )m\big (\frac{x}{\epsilon }-z\big )-\lambda \big (\frac{x}{\epsilon }\big )m\big (\frac{x}{\epsilon }\big )\bigg ]dz+\left( am\right) ''\big (\frac{x}{\epsilon }\big )-\left( bm\right) '\big (\frac{x}{\epsilon }\big )\bigg \}\\&\qquad +\,\frac{1}{\epsilon }\xi '(x)\bigg \{\int _{{\mathbb {R}}}c(z)\bigg [\left( -z+h_1\big (\frac{x}{\epsilon }-z\big )\right) \lambda \big (\frac{x}{\epsilon }-z\big )m\big (\frac{x}{\epsilon }-z\big )-\lambda \big (\frac{x}{\epsilon }\big )m\big (\frac{x}{\epsilon }\big )h_1\big (\frac{x}{\epsilon }\big )\bigg ]dz\\&\qquad +\,2\left( am\right) '\big (\frac{x}{\epsilon }\big )+\left( amh_{1}\right) ''\big (\frac{x}{\epsilon }\big )-b\big (\frac{x}{\epsilon }\big )m\big (\frac{x}{\epsilon }\big )-\left( bmh_{1}\right) '\big (\frac{x}{\epsilon }\big )\bigg \}\\&\qquad +\,\xi ''(x)\bigg \{\int _{\mathbb {R}}c(z)\bigg [\lambda \big (\frac{x}{\epsilon }\!-\!z\big )m\big (\frac{x}{\epsilon }\!-\!z\big )\big (\frac{1}{2}z^2\!-\!zh_1\big (\frac{x}{\epsilon }\!-\!z\big )+h_2\big (\frac{x}{\epsilon }-z\big )\big )\\&\qquad -\,\lambda \big (\frac{x}{\epsilon }\big )m\big (\frac{x}{\epsilon }\big )h_2\big (\frac{x}{\epsilon }\big )\bigg ]dz +a\big (\frac{x}{\epsilon }\big )m\big (\frac{x}{\epsilon }\big )+2(amh_1)'\big (\frac{x}{\epsilon }\big )+(amh_2)''\big (\frac{x}{\epsilon }\big )-(bmh_2)'\big (\frac{x}{\epsilon }\big )\\&\qquad -\,h_1\big (\frac{x}{\epsilon }\big )b\big (\frac{x}{\epsilon }\big )m\big (\frac{x}{\epsilon }\big )\bigg \} +\phi _\epsilon (x), \end{aligned} \end{aligned}$$
(45)

with

$$\begin{aligned} \begin{aligned} \phi _\epsilon (x)&=\frac{1}{\epsilon ^2}\int _{\mathbb {R}}c(z)\bigg \{\epsilon ^2\int _0^1\lambda \big (\frac{x}{\epsilon }-z\big )m\big (\frac{x}{\epsilon }-z\big )\xi ''(x-\epsilon zt)z^2(1-t)dt\\&\quad -\, \frac{\epsilon ^2}{2}\lambda \big (\frac{x}{\epsilon }-z\big ) m\big (\frac{x}{\epsilon }-z\big )\xi ''(x)z^2 +\epsilon ^3 h_1\big (\frac{x}{\epsilon }-z\big )\int _0^1 \xi '''(x-\epsilon zt)z^2(1-t)dt\\&\quad -\, \epsilon ^3 h_2\big (\frac{x}{\epsilon }-z\big )\int _0^1\xi '''(x-\epsilon zt)zdt\bigg \}dz. \end{aligned} \end{aligned}$$

Denote \(\eta =\frac{x}{\epsilon }\) a variable on the period: \(\eta \in {\mathbb {T}}\). we collect all the terms of the order \(\epsilon ^{-2}\) in (45) and equate them to 0.

$$\begin{aligned} \int _{{\mathbb {R}}}c(z)\big [\lambda (\eta -z)m(\eta -z)-\lambda (\eta )m(\eta )\big ]dz +(a(\eta )m(\eta ))''-(b(\eta )m(\eta ))'=({\tilde{T}})^*m(\eta )=0. \end{aligned}$$

From the fact that \(({\tilde{T}}_m)^*(h_1)(\eta )=l(\eta )\), for the terms of order \(\epsilon ^{-1}\), we have

$$\begin{aligned} \begin{array}{rl} 0&{}=\displaystyle \int _{{\mathbb {R}}}c(z)\Big [\big (-z+h_1(\eta -z)\big )\lambda (\eta -z)m(\eta -z)-\lambda (\eta )m(\eta )h_1(\eta ))\Big ]dz\\ &{}\quad +\,2(a(\eta )m(\eta ))' +\left( a(\eta )m(\eta )h_{1}(\eta )\right) ''-b(\eta )m(\eta )-(b(\eta )m(\eta )h_{1}(\eta ))'. \end{array} \end{aligned}$$
(46)

At last, we collect the term of the order \(\varepsilon ^0.\) Our goal is to find the function \(h_2\), such that the sum of these terms will be equal to \(T^0\xi =Q \xi ''\) with \(Q>0\). Then we have

$$\begin{aligned} \begin{aligned}&({\tilde{T}}_m)^*(h_2)(\eta )\\&\quad =-Q+\int _{{\mathbb {R}}}c(z)\lambda (\eta -z)m(\eta -z)\left[ \frac{1}{2}z^2-zh_1(\eta -z)\right] dz +a(\eta )m(\eta )\\&\qquad +\,2(a(\eta )m(\eta )h_1(\eta ))'-b(\eta )m(\eta )h_1(\eta ). \end{aligned} \end{aligned}$$
(47)

Similar to the equality (44). In order to ensure the uniqueness of the function \(h_2\), we see that Q is determined from the following solvability condition for Eq. (44)

$$\begin{aligned} \begin{aligned} Q&=\int _{{\mathbb {T}}}\int _{{\mathbb {R}}}c(z)\lambda (\eta -z)m(\eta -z)\left[ \frac{1}{2}z^2-zh_1(\eta -z)\right] dzd\eta \\&\quad +\,\int _{{\mathbb {T}}}a(\eta )m(\eta )d\eta -\int _{{\mathbb {T}}}b(\eta )m(\eta )h_1(\eta )d\eta . \end{aligned} \end{aligned}$$
(48)

Next, let’s simplify the expression of Q. A short calculation revealed that

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {T}}}\int _{{\mathbb {R}}}c(z)\lambda (\eta -z)m(\eta -z)zh_1(\eta -z)dzd\eta \\&\quad =\int _{{\mathbb {T}}}\int _{{\mathbb {R}}}(\eta -q)c(\eta -q)\lambda (q)m(q)h_1(q)dqd\eta \\&\quad =\int _{{\mathbb {T}}}\int _{{\mathbb {R}}}c(q-\eta )(q-\eta )\lambda (\eta )m(\eta )h_1(\eta )dqd\eta \\&\quad =\int _{{\mathbb {T}}}\left[ \int _{{\mathbb {R}}}c(\eta -q)(q-\eta )dq\right] \lambda (\eta )m(\eta )h_1(\eta )d\eta \\&\quad =0 \end{aligned} \end{aligned}$$

For the third term of Q

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {T}}}-b^m(\eta )h_1(\eta )d\eta =\int _{{\mathbb {T}}}{\tilde{T}}_m\chi (\eta )h_1(\eta )d\eta =\int _{{\mathbb {T}}}\chi (\eta )({\tilde{T}}_m)^*h_1(\eta )d\eta \\&\quad =\int _{{\mathbb {T}}}\chi (\eta )\left[ \int _{{\mathbb {R}}}zc(z)m(\eta -z)\lambda (\eta -z)dz+b^m(\eta )-2(a^m(\eta ))'\right] d\eta , \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {T}}}\chi (\eta )b^m(\eta )d\eta =-\int _{{\mathbb {T}}}\chi (\eta ){\tilde{T}}_m\chi (\eta )d\eta \\&\quad =\int _{{\mathbb {T}}}a^m(\eta )(\chi '(\eta ))^2d\eta +\frac{1}{2}\int _{{\mathbb {T}}}\int _{{\mathbb {R}}}\lambda ^m(\eta )c(z)\left[ \chi (\eta -z)-\chi (\eta )\right] ^2dzd\eta \\&\quad =\int _{{\mathbb {T}}}a^m(\eta )(\chi '(\eta ))^2d\eta +\frac{1}{2}\int _{{\mathbb {T}}}\int _{{\mathbb {R}}}\lambda ^m(q)c(\eta -q)\left[ \chi (q)-\chi (\eta )\right] ^2dqd\eta ,\\ \end{aligned} \end{aligned}$$

we conclude that

$$\begin{aligned} Q\!=\!\int _{{\mathbb {T}}}a(\eta )m(\eta )(\chi '(\eta )\!+\!1)^2d\eta \!+\!\frac{1}{2}\int _{{\mathbb {T}}}\int _{{\mathbb {R}}}c(\eta \!-\!q)\lambda (q)m(q)\left[ (\eta \!-\!q)\!+\!(\chi (\eta )\!-\!\chi (q))\right] ^2d\eta dq. \end{aligned}$$

Our last step is to show that \(\left\| \phi _\varepsilon (x)\right\| _0\) is vanishing as \(\epsilon \rightarrow 0.\)

Choose the term of order \(\epsilon ^0\) of \(\phi _\epsilon (x)\), and denote it by \(\phi _{\epsilon }^{(1)}(x)\). For an arbitrary positive constant M, we infer that

$$\begin{aligned} \begin{aligned} \phi _{\epsilon }^{(1)}(x)&\!=\!\frac{1}{\epsilon ^2}\left[ \int \limits _{\left\{ |z|\!\le \!M\cup |z|\!>\!M\right\} }c(z)\epsilon ^2\lambda (\frac{x}{\epsilon }-z)m(\frac{x}{\epsilon }-z) \int _0^1( \xi ''\left( x-\epsilon zt)-\xi ''(x)\right) z^2(1-t)dt\right] dz\\&:=\phi _{\epsilon }^{(2)}(x)+\phi _{\epsilon }^{(3)}(x). \end{aligned} \end{aligned}$$

Then

$$\begin{aligned} \left\| \phi _{\epsilon }^{(2)}\right\| _0\le & {} \frac{C_2}{2\delta }\sup _{|z|\le M}\left\| \xi ''(x-\epsilon zt)-\xi ''(x)\right\| _0\int _{{\mathbb {R}}}z^2c(z)dz, \\ \Vert \phi _{\epsilon }^{(3)}\Vert _0\le & {} \frac{2C_2}{\delta }\left\| \xi ''(x)\right\| _0 \int _{|z|>M}z^2c(z)dz. \end{aligned}$$

If we take \(M=\frac{1}{\sqrt{\epsilon }}\), then

$$\begin{aligned} \left\| \phi _{\epsilon }^{(2)}\right\| _0\rightarrow 0 \quad and \quad \left\| \phi _{\epsilon }^{(3)}\right\| _0\rightarrow 0, \quad as\quad \epsilon \rightarrow 0. \end{aligned}$$

This implies that

$$\begin{aligned} \left\| \phi _{\epsilon }^{(1)}\right\| _0\rightarrow 0, \quad \epsilon \rightarrow 0. \end{aligned}$$

For the second term of \(\phi _\epsilon (x),\)

$$\begin{aligned} \phi _{\epsilon }^{(4)}(x)=\epsilon \int _{{\mathbb {R}}}c(z)h_1\left( \frac{x}{\epsilon }-z\right) \left[ \int _0^1 \xi '''(x-\epsilon zt)z^2(1-t)dt\right] dz, \end{aligned}$$

we have

$$\begin{aligned} \left\| \phi _{\epsilon }^{(4)}(x)\right\| _0\le \frac{\epsilon C_2}{2\delta }\sup _{z,q\in {\mathbb {R}}}\left\| h_1\left( \frac{x}{\epsilon }-z\right) \xi '''(x-\epsilon z+q)\right\| _0\int _{{\mathbb {R}}}z^2c(z)dz. \end{aligned}$$
(49)

Next, we estimate

$$\begin{aligned} \sup _{z,q\in {\mathbb {R}}}\left\| h_1\left( \frac{x}{\epsilon }-z\right) \xi '''(x-\epsilon z+q)\right\| _0. \end{aligned}$$

Taking \(y=x-\epsilon z\), we deduce that

$$\begin{aligned} \begin{aligned} \sup _{q\in {\mathbb {R}}}\left\| h_1\left( \frac{y}{\epsilon }\right) \xi '''(y+q)\right\| _0&=\sup _{q\in \epsilon {\mathbb {T}}}\left\| h_1\left( \frac{y}{\epsilon }\right) \xi '''(y+q)\right\| _0\\&\le \sup _{q\in \epsilon {\mathbb {T}}} \displaystyle \sum _{k\in {\mathbb {Z}}}\int _{\epsilon k}^{\epsilon k+\epsilon }h_1\left( \frac{y}{\epsilon }\right) ^2 [\xi '''(y+q)]^2dy\\&\le \left\| h_1\right\| ^2_0\sum _{k\in {\mathbb {Z}}}\max _{y\in [\epsilon k,\epsilon k+\epsilon ],q\in \epsilon {\mathbb {T}}}[\xi '''(y+q)]^2dy\\&\rightarrow \left\| h_1\right\| ^2_0\Vert \xi '''\Vert ^2_0, \end{aligned} \end{aligned}$$

as \(\epsilon \rightarrow 0\). Thus from (49), it follows that \(\left\| \phi _{\epsilon }^{(4)}\right\| _0\rightarrow 0\), as \(\epsilon \rightarrow 0.\)

Similarly, for the third term, we have

$$\begin{aligned} \begin{aligned} \left\| \phi _{\epsilon }^{(5)}(x)\right\| _0&=\left\| \epsilon \int _{{\mathbb {R}}}dz c(z) h_2(\frac{x}{\epsilon }-z)\int _0^1\xi '''(x-\epsilon zt)zdt\right\| _0\\&\rightarrow 0. \end{aligned} \end{aligned}$$

In summary, we have \(\left\| \phi _\epsilon (x)\right\| _0 \rightarrow 0,\) as \(\epsilon \rightarrow 0.\) \(\square \)

Appendix D: Convergence of \((V^\epsilon )^*\xi ^\epsilon \)

Here we will show the convergence of \((V^\epsilon )^*\xi ^\epsilon ,\) as \(\epsilon \) goes to 0.

First, Let’s do a simple calculation for fractional Laplace operator. For every functions \(f,g,\psi \in H^{\alpha /2}\),

$$\begin{aligned} \begin{aligned}&\big \langle (-\varDelta )^{\alpha /2}(f\cdot g)(x),\psi (x)\big \rangle =\int _{{\mathbb {R}}}\int _{{\mathbb {R}}}\big (f(x)g(x)-f(y)g(y)\big )\psi (x)\gamma ^2(x,y)dxdy\\&\quad =\frac{1}{2}\int _{{\mathbb {R}}}\int _{{\mathbb {R}}}\big (f(x)g(x)-f(y)g(y)\big )\big (\psi (x)-\psi (y)\big )\gamma ^2(x,y)dxdy\\&\quad =\frac{1}{2}\big (\mathcal {D^{*}}(fg)(x,y),\mathcal {D^{*}}\psi (x,y)\big )_{L^2{({\mathbb {R}}\times {\mathbb {R}})}}\\&\quad =\small {\frac{1}{2}\int _{{\mathbb {R}}}\int _{{\mathbb {R}}}\big [(f(x)-f(y)g(x)+f(x)(g(x)-g(y))\big ](\psi (x)-\psi (y))\gamma ^2(x,y)dxdy}\\&\quad =\frac{1}{2}\Big (\mathcal {D^{*}}(f)(x,y)g(x)+\mathcal {D^{*}}(g)(x,y)f(y),\mathcal {D^{*}}\psi (x,y)\Big )_{L^2{({\mathbb {R}}\times {\mathbb {R}})}}.\\ \end{aligned} \end{aligned}$$

For the operator \(L^\epsilon ,\) we have

$$\begin{aligned} \begin{aligned}&\big \langle (L^\epsilon )^*\xi ^\epsilon ,\psi \big \rangle =\bigg (-(-\varDelta )^{\alpha /2}(\delta _1^\epsilon \xi ^\epsilon )(x),\psi (x)\bigg ) -\frac{1}{\epsilon ^{\alpha -1}}\bigg ((p^\epsilon (x)\xi ^\epsilon (x))',\psi (x)\bigg )\\&\quad =-\frac{1}{2}\bigg (\mathcal {D^{*}}(\delta _1^\epsilon \xi ^\epsilon )(x,y),\mathcal {D^{*}}\psi (x,y)\bigg )_{L^2{({\mathbb {R}}\times {\mathbb {R}})}} -\frac{1}{\epsilon ^{\alpha -1}}\bigg ((p^\epsilon (x)\xi ^\epsilon (x))',\psi (x)\bigg )\\&\quad =-\frac{1}{2}\bigg (\mathcal {D^{*}}(\delta _1^{m_1,\epsilon }\xi )(x,y),\mathcal {D^{*}}\psi (x,y)\bigg )_{L^2{({\mathbb {R}}\times {\mathbb {R}})}} -\frac{\epsilon }{2}\bigg (\mathcal {D^{*}}(\delta _1^{m_1,\epsilon } h_{3}^\epsilon \xi ^{'})(x,y),\mathcal {D^{*}}\psi (x,y)\bigg )_{L^2{({\mathbb {R}}\times {\mathbb {R}})}}\\&\qquad -\,\bigg (\epsilon ^{-\alpha }(pm_1)'\left( \frac{x}{\epsilon }\right) +\epsilon ^{1-\alpha }p^{m_1,\epsilon }(x)\xi '(x)+\epsilon ^{2-\alpha }\Big (p^{m_1,\epsilon }(x)h_3^{\epsilon }(x)\Big )'\xi '(x),\psi (x)\bigg )\\&\qquad -\,\bigg (\epsilon ^{2-\alpha }p^{m_1,\epsilon }(x)h_3^{\epsilon }(x)\xi ''(x),\psi (x)\bigg )\\&\quad :=G_1+G_2-\bigg (\epsilon ^{-\alpha }(pm_1)'\left( \frac{x}{\epsilon }\right) \xi (x)+\epsilon ^{1-\alpha }p^{m_1,\epsilon }(x)\xi '(x)+\epsilon ^{1-\alpha }(pm_1h_3)'\left( \frac{x}{\epsilon }\right) \xi '(x),\psi (x)\bigg )\\&\qquad -\,\bigg (\phi ^1_{\epsilon },\psi (x)\bigg ), \end{aligned} \end{aligned}$$

where \((\phi ^1_{\epsilon },\psi (x))\rightarrow 0,\) as \(\epsilon \) goes to 0. Furthermore, we can show that,

$$\begin{aligned} \begin{aligned} G_1&=-\frac{1}{2}\bigg (\mathcal {D^{*}}(\delta _1^{m_1,\epsilon }\xi )(x,y),\mathcal {D^{*}}\psi (x,y)\bigg )_{L^2{({\mathbb {R}}\times {\mathbb {R}})}}\\&=-\frac{1}{2}\bigg (\mathcal {D^{*}}(\delta _1^{m_1,\epsilon })(x,y)\xi (x)+\mathcal {D^{*}}(\xi )(x,y)\delta _1^{m_1,\epsilon }(y),\mathcal {D^{*}}\psi (x,y)\bigg )_{L^2{ ({\mathbb {R}}\times {\mathbb {R}})}}\\&=-\frac{1}{2}\bigg (\mathcal {D^{*}}(\delta _1^{m_1,\epsilon })(x,y),\mathcal {D^{*}}(\psi \xi )(x,y)-\mathcal {D^{*}}(\xi )(x,y)\psi (y)\bigg )_{L^2{({\mathbb {R}}\times {\mathbb {R}})}}\\&\quad -\,\frac{1}{2}\bigg (\mathcal {D^{*}}(\xi )(x,y),\delta _1^{m_1,\epsilon }(y)\mathcal {D^{*}}\psi (x,y)\bigg )_{L^2{({\mathbb {R}}\times {\mathbb {R}})}} =\bigg (-(-\varDelta )^{\alpha /2}\delta _1^{m_1,\epsilon }(x),\psi (x)\xi (x)\bigg )\\&\quad -\,\frac{1}{2}\bigg (\mathcal {D^{*}}(\xi )(x,y), \delta _1^{m_1,\epsilon }(y)\mathcal {D^{*}}\psi (x,y)-\mathcal {D^{*}}\delta _1^{m_1,\epsilon }(x,y)\psi (y)\bigg )_{L^2{({\mathbb {R}}\times {\mathbb {R}})}}\\&:=I_1+I_2. \end{aligned} \end{aligned}$$

For \(I_2,\) we deduce that,

$$\begin{aligned} I_2= & {} -\frac{1}{2}\bigg (\mathcal {D^{*}}(\xi )(x,y),\delta _1^{m_1,\epsilon }(y)\mathcal {D^{*}}\psi (x,y)-\mathcal {D^{*}}\delta _1^{m_1,\epsilon }(x,y)\psi (y)\bigg ) _{L^2{({\mathbb {R}}\times {\mathbb {R}})}}\\= & {} -\frac{1}{2}\bigg (\mathcal {D^{*}}(\xi )(x,y),\mathcal {D^{*}}(\delta _1^{m_1,\epsilon }\psi )(x,y)-\mathcal {D^{*}}\delta _1^{m_1,\epsilon }(x,y)\left[ \psi (x)+\psi (y)\right] \bigg ) _{L^2{({\mathbb {R}}\times {\mathbb {R}})}}\\:= & {} \bigg (-(-\varDelta )^{\alpha /2}\xi (x),\delta _1^{m_1,\epsilon }(x)\psi (x)\bigg )+I_3,\\ \end{aligned}$$

where we have \(I_3\rightarrow 0\). In fact,

$$\begin{aligned} \begin{aligned} I_3&=\frac{1}{2}\bigg (\mathcal {D^{*}}(\xi )(x,y),\mathcal {D^{*}}\delta _1^{m_1,\epsilon }(x,y)\left[ \psi (x)+\psi (y)\right] \bigg )_{L^2{({\mathbb {R}}\times {\mathbb {R}})}}\\&=\int _{{\mathbb {R}}}\int _{{\mathbb {R}}}\left[ \xi (x)-\xi (y)\right] \delta _1^{m_1,\epsilon }(x)\left[ \psi (x)+\psi (y)\right] \gamma ^2(x,y)dxdy\\&=\bigg (\int _{{\mathbb {R}}}\left[ \xi (x)-\xi (y)\right] \left[ \psi (x)+\psi (y)\right] \gamma ^2(x,y)dy,\delta _1^{m_1,\epsilon }(x)\bigg ) \rightarrow 0. \end{aligned} \end{aligned}$$

From the calculation above, we can obtain that,

$$\begin{aligned} \begin{aligned} G_2=\epsilon \bigg (-(-\varDelta )^{\alpha /2}(\delta _1^{m_1,\epsilon } h_3^\epsilon )(x),\psi (x)\xi '(x)\bigg )-\bigg (\phi ^2_\epsilon ,\psi (x)\xi '(x)\bigg ), \end{aligned} \end{aligned}$$

where \(\bigg (\phi _2^\epsilon ,\psi (x)\xi '(x)\bigg )\rightarrow 0,\) as \(\epsilon \) goes to 0. Then, we have,

$$\begin{aligned} \begin{aligned} \big \langle (L^\epsilon )^*\xi ^\epsilon ,\psi \big \rangle&=\bigg (-(-\varDelta )^{\alpha /2}\delta _1^{m_1,\epsilon }(x)-\epsilon ^{-\alpha }(pm_1)'\left( \frac{x}{\epsilon }\right) ,\psi (x)\xi (x)\bigg )\\&\quad +\,\bigg (-\epsilon (-\varDelta )^{\alpha /2}(\delta _1^{m_1,\epsilon } h_3^\epsilon )(x)-\epsilon ^{1-\alpha }p^{m_1,\epsilon }(x)-\epsilon ^{1-\alpha }(pm_1h_3)'\left( \frac{x}{\epsilon }\right) ,\psi (x)\xi '(x)\bigg )\\&\quad +\,\bigg (-(-\varDelta )^{\alpha /2}\xi (x), \delta _1^{m_1,\epsilon }(x)\psi (x)\bigg )+\phi _\epsilon ^3\\ \end{aligned} \end{aligned}$$

where \(\phi _\epsilon ^3\) goes to 0. Using the Eqs. (12), (29), as \(\epsilon \rightarrow 0\), we have

$$\begin{aligned} \left\langle (L^\epsilon )^*\xi ^\epsilon ,\psi \right\rangle \rightarrow \left( \int _{\mathbb {T}}\delta ^\alpha (\eta )m_1(\eta )d\eta \right) \cdot \bigg (-(-\varDelta )^{\alpha /2}\xi (x),\psi (x)\bigg ). \end{aligned}$$

From the fact that

$$\begin{aligned} \left\langle F^\epsilon )^*\xi ^\epsilon ,\psi \right\rangle \rightarrow \left( -\xi '(x)\int _{{\mathbb {T}}}g(\eta )m_1(\eta )d\eta +\xi (x)\int _{{\mathbb {T}}}f(\eta )m_1(\eta )d\eta ,\psi (x)\right) \end{aligned}$$

We can infer that

$$\begin{aligned} \begin{aligned} \left\langle (V^\epsilon )^*\xi ^\epsilon ,\psi \right\rangle \rightarrow&\bigg (\int _{{\mathbb {T}}}\delta ^\alpha (\eta )m_1(\eta )d\eta \cdot \Big (-(-\varDelta )^{\alpha /2}\Big )\xi (x)+\xi '(x)\int _{{\mathbb {T}}}g(\eta )m_1(\eta )d\eta \\&+\xi (x)\int _{{\mathbb {T}}}f(\eta )m_1(\eta )d\eta ,\psi (x)\bigg ). \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Duan, J. & Yang, M. Effective Reduction for a Nonlocal Zakai Stochastic Partial Differential Equation in Data Assimilation. J Dyn Diff Equat 35, 421–453 (2023). https://doi.org/10.1007/s10884-021-09996-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09996-y

Keywords

Mathematics Subject Classification

Navigation