Skip to main content
Log in

Some Remarks Concerning the Scattering Theory for the Sturm–Liouville Operator

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We start to discuss some aspects of the scattering theory for the Sturm–Liouville operator \(L:\dfrac{1}{y}\left[ -D^2+q\right] \). In particular, we pose and solve the problem of reconstructing the function q when y is fixed and when a set \({\mathcal {S}}\) of scattering data is given. In the meanwhile, several relations concerning the spectral properties of L and the solutions of the related eigenvalue equation are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The term acoustic is due to the fact that (1) appears in the separation of variables method for solving the wave equation.

References

  1. Beals, R., Sattinger, D., Szmigielski, J.: Multipeakons and the classical moment problem. Adv. Math. 154, 229–257 (2000)

    Article  MathSciNet  Google Scholar 

  2. Burge, R.E., Fiddy, M.: The application of dispersion relations (Hilbert transforms) to phase retrieval. J. Phys. D Appl. Phys. 7, 61–68 (1974)

    Article  Google Scholar 

  3. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  4. Constantin, A.: On the inverse spectral problem for the Camassa–Holm equation. J. Funct. Anal. 155, 352–363 (1996)

    Article  MathSciNet  Google Scholar 

  5. Constantin, A., Lenells, J.: On the inverse scattering approach for an integrable shallow water wave equation. Phys. Lett. A 308, 432–436 (2003)

    Article  MathSciNet  Google Scholar 

  6. Constantin, A., Lenells, J.: On the inverse scattering approach to the Camassa–Holm equation. J. Nonlinear Phys. 10(203), 252–255 (2003)

    Article  MathSciNet  Google Scholar 

  7. Courant, R., Hilbert, D.: Methods of Mathematical Physics: Partial Differential Equations, vol. 2. Intersciences, New York (1965)

    MATH  Google Scholar 

  8. Dubrovin, B., Matveev, V., Novikov, S.: Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties. Russ. Math. Surv. 31, 59–146 (1976)

    Article  Google Scholar 

  9. Fabbri, R., Johnson, R., Zampogni, L.: Nonautonomous differential systems in two dimensions. In: Handbook of Differential Equations: Ordinary Differential Equations, vol. 4, Chpt. 2, pp. 133–268. F. Battelli/M. Feckan eds., Elsevier, Amsterdam (2008)

  10. Gardner, C., Greene, J., Kruskal, M., Miura, R.: Methods for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  11. Gesztesy, F., Holden, H.: Algebro-geometric solutions of the Camassa–Holm hierarchy. Rev. Math. Iberoam. 19, 73–142 (2003)

    Article  MathSciNet  Google Scholar 

  12. Gesztesy, F., Karwowski, W., Zhao, Z.: Limits of soliton solutions. Duke Math. J. 68, 101–150 (1992)

    Article  MathSciNet  Google Scholar 

  13. Johnson, R.: Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients. J. Differ. Equ. 61, 54–78 (1986)

    Article  MathSciNet  Google Scholar 

  14. Johnson, R.: On the Sato–Segal–Wilson solutions of the K-dV equation. Pac. J. Math. 132, 333–345 (1988)

    Article  MathSciNet  Google Scholar 

  15. Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982)

    Article  MathSciNet  Google Scholar 

  16. Johnson, R., Zampogni, L.: On the inverse Sturm–Liouville problem. Discrete Contin. Dyn. Syst. 18, 405–428 (2007)

    Article  MathSciNet  Google Scholar 

  17. Johnson, R., Zampogni, L.: Description of the algebro-geometric Sturm–Liouville coefficients. J. Differ. Equ. 244, 716–740 (2008)

    Article  MathSciNet  Google Scholar 

  18. Johnson, R., Zampogni, L.: Some remarks concerning reflectionless Sturm–Liouville potentials. Stoch. Dyn. 8, 413–449 (2008)

    Article  MathSciNet  Google Scholar 

  19. Johnson, R., Zampogni, L.: Remarks on a paper of Kotani concerning generalized reflectionless Sturm–Liouville potentials. Discrete Contin. Dyn. Syst. B 14, 559–586 (2010)

    MATH  Google Scholar 

  20. Johnson, R., Zampogni, L.: On the Camassa–Holm and K-dV hierarchies. J. Dyn. Differ. Equ. 22, 331–366 (2010)

    Article  MathSciNet  Google Scholar 

  21. Johnson, R., Zampogni, L.: The Sturm–Liouville hierarchy of evolution equations. Adv. Nonlinear Stud. 11, 555–591 (2011)

    Article  MathSciNet  Google Scholar 

  22. Johnson, R., Zampogni, L.: The Sturm–Liouville hierarchy of evolution equations II. Adv. Nonlinear Stud. 12, 501–532 (2012)

    Article  MathSciNet  Google Scholar 

  23. Johnson, R., Zampogni, L.: The Sturm-Liouville hierarchy of evolution equations and limits of algebro-geometric initial data. Symmetry, Integrability and Geometry: Methods and Applications 10 (2014)

  24. Kotani, S.: K-dV flow on generalized reflectionless potentials. J. Math. Phys. Anal. Geom. 4, 490–528 (2008)

    MATH  Google Scholar 

  25. Levitan, B.: Approximation of infinite-zone potentials by finite-zone potentials. Math. USSR Izvestija 20, 55–87 (1983)

    Article  Google Scholar 

  26. Levitan, B.: Inverse Sturm–Liouville problems. VNU Science Press, Utrecht (1987)

    Book  Google Scholar 

  27. Lundina, D.: Compactness of the set of reflectionless potentials. Teor. Funkts. Funkts. Anal. i Prilozh. 44, 55–66 (1985)

    Google Scholar 

  28. Marchenko, V.: Sturm–Liouville Operators and Applications. Birkhaeuser, Boston (1986)

    Book  Google Scholar 

  29. Marchenko, V.: The Cauchy problem for the K-dV equation with nondecreasing initial data. In: Zakharov V (eds) Springer Series in Nonlinear Dynamics, What is Integrability?, pp. 273–318 (1990)

  30. Marchenko, V., Ostrovsky, V.: Approximation of periodic by finite-zone potentials. Selecta Math. Sov. 6, 101–136 (1987)

    MATH  Google Scholar 

  31. Titchmarsh, E.: Introduction to the Theory of Fourier Integrals. Clarendon Press, Oxford (1948)

    Google Scholar 

  32. Zampogni, L.: On algebro-geometric solutions of the Camassa–Holm hierarchy. Adv. Nonlinear Stud. 7, 345–380 (2007)

    Article  MathSciNet  Google Scholar 

  33. Zampogni, L.: On infinite order K-dV hierarchies. J. Appl. Funct. Anal. 4, 140–170 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Zampogni, L.: The Sturm–Liouville scattering inverse problem on the line (submitted)

  35. Zampogni, L.: On the scattering theory for hierarchies of nonlinear evolution equations (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Zampogni.

Additional information

Dedicated to the memory of Russell Johnson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampogni, L. Some Remarks Concerning the Scattering Theory for the Sturm–Liouville Operator. J Dyn Diff Equat 34, 311–339 (2022). https://doi.org/10.1007/s10884-020-09922-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09922-8

Keywords

Mathematics Subject Classification

Navigation