Skip to main content
Log in

Spatial-Temporal Dynamics of a Diffusive Lotka–Volterra Competition Model with a Shifting Habitat II: Case of Faster Diffuser Being a Weaker Competitor

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study a Lotka–Volterra competition–diffusion model that describes the growth, spread and competition of two species in a shifting habitat. Some results have been obtained previously for some cases for the diffusion rates and competitions rates, and in this paper we continue to explore the remaining complementary case for the spatial dynamics of the system. Our main result in this paper reveals an essential difference between the case of faster diffuser being weak competitor and the case of faster diffuser being strong competitor: with the severe habitat worsening with constant speed, for the former the two competing species can co-persist by spreading, whereas for the latter, co-persistence is impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berestycki, H., Diekmann, O., Nagelkerke, C.J., Zegeling, P.A.: Can a species keep pace with a shifting climate? Bull. Math. Biol. 71, 399–429 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Bradley, B.A., Wilcove, D.S., Oppenheimer, M.: Climate change increases risk of plant invasion in the eastern United States. Biol. Invas. 12, 1855–1872 (2010)

    Google Scholar 

  3. Cantrell, R.S., Cosner, C.: The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315–338 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Cantrell, R.S., Cosner, C.: On the effects of spatial heterogeneity on the persistence of interacting species. J. Math. Biol. 37, 103–145 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–diffusion Equations. Wiley, Chichester (2003)

    MATH  Google Scholar 

  6. Carrère, C.: Spreading speeds for a two-species competition–diffusion system. J. Diff. Equ. 264, 2133–2156 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction-diffusion model. J. Math. Biol. 37, 61–83 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Gonzalez, P., Neilson, R.P., Lenihan, J.M., Drapek, R.J.: Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010)

    Google Scholar 

  9. Girardin, L., Lam, K.-Y.: Invasion of an empty habitat by two competitors: spreading properties of monostable two-species competition-diffusion systems. Proc. Lond. Math. Soc. 119, 1279–1335 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Hastings, A.: Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24, 244–251 (1983)

    MATH  Google Scholar 

  11. Hastings, A.: Spatial heterogeneity and ecological models. Ecology 71, 426–428 (1990)

    Google Scholar 

  12. He, X., Ni, W.: The effects of diffusion and spatial variation in Lotka–Volterra competition–diffusion system I: heterogeneity vs. homogeneity. J. Differ. Equ. 254, 528–546 (2013)

    MathSciNet  MATH  Google Scholar 

  13. He, X., Ni, W.: The effects of diffusion and spatial variation in Lotka–Volterra competition–diffusion system II: the general case. J. Differ. Equ. 254, 4088–4108 (2013)

    MathSciNet  MATH  Google Scholar 

  14. He, X., Ni, W.: Global dynamics of the Lotka–Volterra competition–diffusion system: diffusion and spatial heterogeneity I. Comm. Pure Appl. Math. 69, 981–1014 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Hu, C., Li, B.: Spatial dynamics for lattice differential equations with a shifting habitat. J. Differ. Equ. 259, 1967–1989 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Hutson, V., Lou, Y., Mischaikow, K.: Spatial heterogeneity of resources versus Lotka-Volterra dynamics. J. Differ. Equ. 185, 97–136 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Hutson, V., Lou, Y., Mischaikow, K.: Convergence in competition models with small diffusion coefficients. J. Differ. Equ. 211, 135–161 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Levin, S.A.: Dispersion and population interactions. Am. Nat. 108, 207–228 (1974)

    Google Scholar 

  20. Li, B., Bewick, S., Shang, J., Fagan, W.F.: Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 74, 1397–1417 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Lin, G., Li, W.-T.: Asymptotic spreading of competition diffusion systems: the role of interspecific competitions. Eur. J. Appl. Math. 23, 669–689 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B., Ackerly, D.D.: The velocity of climate change. Nature 462, 1052–1055 (2009)

    Google Scholar 

  23. Lovejoy, T.E., Hannah, L.: Climate Change and Biodiversity. Yale University Press, New Haven (2005)

    Google Scholar 

  24. Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 223, 400–426 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Lou, Y.: Some reaction diffusion models in spatial ecology. Sci. Sin. Math. 45, 1619–1634 (2015). (in Chinese)

    Google Scholar 

  26. McCarty, J.P.: Ecological consequences of recent climate change. Conserv. Biol. 15, 320–331 (2001)

    Google Scholar 

  27. Okubo, A., Levin, S.: Diffusion and Ecological Problems: Modern Perspectives, Interdisciplinary Applied Mathematics, vol. 14, 2nd edn. Springer, New York (2001)

    Google Scholar 

  28. Pacala, S., Roughgarden, J.: Spatial heterogeneity and interspecific competition. Theor. Popul. Biol. 21, 92–113 (1982)

    MathSciNet  MATH  Google Scholar 

  29. Pao, C.V.: Dynamics of nonlinear parabolic systems with time delays. J. Math. Anal. Appl. 198, 751–779 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W.J., Thomas, J.A., Warren, M.: Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999)

    Google Scholar 

  31. Parmesan, C.: Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 37, 637–669 (2006)

    Google Scholar 

  32. Parr, C.L., Gray, E.F., Bond, W.J.: Cascading biodiversity and functional consequences of a global change-induced biome switch. Divers. Distrib. 18, 493–503 (2012)

    Google Scholar 

  33. Potapov, A.B., Lewis, M.A.: Climate and competition: the effect of moving range boundaries on habitat invisibility. Bull. Math. Biol. 66, 975–1008 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Sandel, B., Arge, L., Dalsgaard, B., Davies, R.G., Gaston, K.J., Sutherland, W.J., Svenning, J.-C.: The influence of late quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011)

    Google Scholar 

  35. Scheiter, S., Higgins, S.I.: Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. Glob. Change Biol. 15, 2224–2246 (2009)

    Google Scholar 

  36. Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., Hoegh-Guldberg, O., Bairlein, F.: Ecological responses to recent climate change. Nature 416, 389–395 (2002)

    Google Scholar 

  37. Wang, X.: On the Cauchy problem for reaction–diffusion equations. Trans. Am. Math. Soc. 337, 549–589 (1993)

    MathSciNet  MATH  Google Scholar 

  38. Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    MathSciNet  MATH  Google Scholar 

  39. Xia, D., Wu, Z., Yan, S., Shu, W.: Theory of Real Variable Function and Functional Analysis, 2nd edn. Higher Education Press, Beijing (2010). (in Chinese)

    Google Scholar 

  40. Yuan, Y., Wang, Y., Zou, X.: Spatial-temporal dynamics of a Lotka-Volterra competition-diffusion model with a shifting habitat. Disc. Cont. Dyn. Syst. B 24, 5633–5671 (2019)

    MATH  Google Scholar 

  41. Zhang, Z., Wang, W., Yang, J.: Persistence versus extinction for two competing species under climate change. Nonlinear Anal. Modell. Contr. 22, 285–302 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Zhou, Y., Kot, M.: Discrete-time growth-dispersal models with shifting species ranges. Theor. Ecol. 4, 13–25 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research was partially supported by National Natural Science Foundation of China (No. 11561068), NSERC of Canada (No. RGPIN-2016-04665) and Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (No. 2018MMAEZD08).

Appendix

Appendix

In this appendix, we give the detailed proof of Lemmas 2.2 and 2.5.

Proof of Lemma 2.2

For any \(\epsilon \) with \(0<\epsilon <\min \left\{ \frac{1}{3},r^{(0)}(\infty ),\frac{c_{2,0}^*(\infty )-c^*_1(\infty )-\varepsilon ^{(0)}}{3}\right\} \), let \(\ell \) be a real number such that

$$\begin{aligned} c_{2,0}^*(\ell )=c_{2,0}^*(\infty )-\epsilon . \end{aligned}$$

We choose \(0<\mu _1<\mu _2<\mu _{2,0}^*(\ell )\) such that \(\psi _2(\mu _1)=c^*_1(\infty )+\varepsilon ^{(0)}+\epsilon \) and \(\psi _2(\mu _2)=c_{2,0}^*(\infty )-2\epsilon \). By Lemma 2.1, for any \(\mu \in [\mu _1,\mu _2]\) and sufficiently small \(\beta >0\) and \(\gamma >0\), \(\frac{\beta }{\varphi (\mu ;\sigma (\mu ))}\varphi (\mu ;x-\ell -\psi _2(\mu )t)\) with \(\varphi \) given by (2.7) is a continuous weak lower solution of (2.5).

Since \(\phi _2(x)\ge 0\) and \(\phi _2(x)\not \equiv 0\), \(u^{(0)}_2(t,x,\phi )>0\) for all \((t,x)\in (0,+\infty )\times {\mathbb {R}}\). Choose \(T_0<t_0<T_0+\frac{\sigma (\mu _1)}{\psi _2(\mu _1)}\), and choose sufficiently small \(\beta >0\) and \(\gamma >0\) such that

$$\begin{aligned} \frac{\pi /\gamma +\sigma (\mu _1)-\sigma (\mu _2)}{\psi _2(\mu _2)-\psi _2(\mu _1)}>T_0 \end{aligned}$$
(5.1)

and

$$\begin{aligned} u^{(0)}_2(t_0,x,\phi )\ge \beta ,\ \ \ \forall x\in [\ell +\psi _2(\mu _1)T_0,\ell +4\pi /\gamma +\psi _2(\mu _2)T_0]. \end{aligned}$$
(5.2)

Define

$$\begin{aligned} w(T_0,x)=\left\{ \begin{array}{lll} \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _2(\mu _1)T_0)\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +\psi _2(\mu _1)T_0\le x\le \ell +\sigma (\mu _1)+\psi _2(\mu _1)T_0;\\ \\ \beta \ \ \ \ \text{ if }\ \ell +\sigma (\mu _1)+\psi _2(\mu _1)T_0\le x\le \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _2(\mu _2)T_0;\\ \\ \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _2(\mu _2)T_0)\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _2(\mu _2)T_0\le x\le \ell +4\pi /\gamma +\psi _2(\mu _2)T_0;\\ \\ 0 \ \ \ \ \ \text{ elsewhere }. \end{array} \right. \end{aligned}$$

It is easily seen that

$$\begin{aligned} w(T_0,x)\ge \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _2(\mu _1)T_0-s),\ \ \forall s\in [0,2\pi /\gamma ] \end{aligned}$$

and

$$\begin{aligned} w(T_0,x)\ge \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _2(\mu _2)T_0+s),\ \ \forall s\in [0,2\pi /\gamma ]. \end{aligned}$$

By (5.2) and Lemma 2.1, for any \(t\ge t_0\), we have

$$\begin{aligned}&u^{(0)}_2(t,x,\phi )\nonumber \\&\quad \ge \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _2(\mu _1)(T_0+t-t_0)-s),\ \ \forall s\in [0,2\pi /\gamma ] \end{aligned}$$
(5.3)

and

$$\begin{aligned}&u^{(0)}_2(t,x,\phi )\ge \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma \nonumber \\&\quad -\psi _2(\mu _2)(T_0+t-t_0)+s),\ \ \forall s\in [0,2\pi /\gamma ]. \end{aligned}$$
(5.4)

Inequalities (5.3) and (5.4) imply that for any \(t\ge t_0\),

$$\begin{aligned} u^{(0)}_2(t,x,\phi )\ge \left\{ \begin{array}{lll} \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _2(\mu _1)(T_0+t-t_0))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +\psi _2(\mu _1)(T_0+t-t_0)\le x\le \ell +\sigma (\mu _1)+\psi _2(\mu _1)(T_0+t-t_0);\\ \\ \beta \ \ \ \ \text{ if }\ \ell +\sigma (\mu _1)+\psi _2(\mu _1)(T_0+t-t_0)\le x\le \ell +2\pi /\gamma \\ \\ \ \ \ \ \ \ \ \ \ +\sigma (\mu _1)+\psi _2(\mu _1)(T_0+t-t_0);\\ \\ 0 \ \ \ \ \ \text{ elsewhere } \end{array} \right. \end{aligned}$$
(5.5)

and

$$\begin{aligned} u^{(0)}_2(t,x,\phi )\ge \left\{ \begin{array}{lll} \beta \ \ \ \ \text{ if }\ \ell +\pi /\gamma +\sigma (\mu _2)+\psi _2(\mu _2)(T_0+t-t_0)\le x\le \ell +3\pi /\gamma \\ \\ \ \ \ \ \ \ \ \ \ +\sigma (\mu _2)+\psi _2(\mu _2)(T_0+t-t_0);\\ \\ \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _2(\mu _2)(T_0+t-t_0))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _2(\mu _2)(T_0+t-t_0)\le x\le \ell +4\pi /\gamma \\ \\ \ \ \ \ \ \ \ \ \ +\psi _2(\mu _2)(T_0+t-t_0);\\ \\ 0 \ \ \ \ \ \text{ elsewhere }. \end{array} \right. \end{aligned}$$
(5.6)

Let

$$\begin{aligned} h=\frac{\pi /\gamma +\sigma (\mu _1)-\sigma (\mu _2)}{\psi _2(\mu _2)-\psi _2(\mu _1)}-T_0. \end{aligned}$$

Then (5.1) implies that \(h>0\). Since

$$\begin{aligned}&\ell +2\pi /\gamma +\sigma (\mu _1)+\psi _2(\mu _1)(T_0+t-t_0)\\&\quad \ge \ell +\pi /\gamma +\sigma (\mu _2)+\psi _2(\mu _2)(T_0+t-t_0),\ \ \ \forall t\in [t_0, t_0+h], \end{aligned}$$

inequalities (5.5) and (5.6) imply that

$$\begin{aligned} u^{(0)}_2(t,x,\phi )\ge w(t-t_0^*,x),\ \ \ \forall t\in [t_0, t_0+h], \end{aligned}$$
(5.7)

where \(t_0^*=t_0-T_0\) and

$$\begin{aligned} w(t-t^*_0,x)=\left\{ \begin{array}{lll} \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _2(\mu _1)(t-t_0^*))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +\psi _2(\mu _1)(t-t_0^*)\le x\le \ell +\sigma (\mu _1)+\psi _2(\mu _1)(t-t_0^*);\\ \\ \beta \ \ \ \ \text{ if }\ \ell +\sigma (\mu _1)+\psi _2(\mu _1)(t-t_0^*)\le x\le \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _2(\mu _2)(t-t_0^*);\\ \\ \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _2(\mu _2)(t-t_0^*))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _2(\mu _2)(t-t_0^*)\le x\le \ell +4\pi /\gamma +\psi _2(\mu _2)(t-t_0^*);\\ \\ 0 \ \ \ \ \ \text{ elsewhere }. \end{array} \right. \nonumber \\ \end{aligned}$$
(5.8)

We claim that (5.7) holds true for all \(t\ge t_0\). Assume that (5.7) is valid for \(t\in [t_0, t_0+nh]\) for some positive integer n. Then for any \(s\in [0, 2\pi /\gamma +(\psi _2(\mu _2)-\psi _2(\mu _1))(T_0+nh)]\),

$$\begin{aligned} w(T_0+nh,x)\ge \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _2(\mu _1)(T_0+nh)-s) \end{aligned}$$

and

$$\begin{aligned} w(T_0+nh,x)\ge \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _2(\mu _2)(T_0+nh)+s). \end{aligned}$$

Therefore, Lemma 2.1 implies that for any \(t\ge t_0+nh\) and \(s\in [0, 2\pi /\gamma +(\psi _2(\mu _2)-\psi _2(\mu _1))(T_0+nh)]\),

$$\begin{aligned} u^{(0)}_2(t,x,\phi )\ge \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _2(\mu _1)(T_0+nh)-\psi _2(\mu _1)(t-(t_0+nh))-s) \nonumber \\ \end{aligned}$$
(5.9)

and

$$\begin{aligned} u^{(0)}_2(t,x,\phi )\ge & {} \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma \nonumber \\&-\psi _2(\mu _2)(T_0+nh)-\psi _2(\mu _2)(t-(t_0+nh))+s). \end{aligned}$$
(5.10)

Inequalities (5.9) and (5.10) imply that for any \(t\ge t_0+nh\),

$$\begin{aligned} u^{(0)}_2(t,x,\phi )\ge \left\{ \begin{array}{lll} \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _2(\mu _1)(T_0+t-t_0))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +\psi _2(\mu _1)(T_0+t-t_0)\le x\le \ell +\sigma (\mu _1)+\psi _2(\mu _1)(T_0+t-t_0);\\ \\ \beta \ \ \ \ \text{ if }\ \ell +\sigma (\mu _1)+\psi _2(\mu _1)(T_0+t-t_0)\le x\le \ell +2\pi /\gamma \\ \\ \ \ \ \ \ \ \ \ \ +\sigma (\mu _1)+\psi _2(\mu _1)(t-(t_0+nh))+\psi _2(\mu _2)(T_0+nh);\\ \\ 0 \ \ \ \ \ \text{ elsewhere } \end{array} \right. \nonumber \\ \end{aligned}$$
(5.11)

and

$$\begin{aligned} u^{(0)}_2(t,x,\phi )\ge \left\{ \begin{array}{lll} \beta \ \ \ \ \text{ if }\ \ell +\pi /\gamma +\sigma (\mu _2)+\psi _2(\mu _2)(t-(t_0+nh))+\psi _2(\mu _1)(T_0+nh)\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _2(\mu _2)(T_0+t-t_0);\\ \\ \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _2(\mu _2)(T_0+t-t_0))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _2(\mu _2)(T_0+t-t_0)\le x\le \ell +4\pi /\gamma \\ \\ \ \ \ \ \ \ \ \ \ +\psi _2(\mu _2)(T_0+t-t_0);\\ \\ 0 \ \ \ \ \ \text{ elsewhere }. \end{array} \right. \end{aligned}$$
(5.12)

Since

for all \(t\in [t_0+nh,t_0+(2n+1)h+2T_0]\), inequalities (5.11) and (5.12) imply that (5.7) holds true for all \(t\in [t_0+nh,t_0+(n+1)h]\). By induction, (5.7) is true for all \(t\ge t_0\).

For the chosen \(\epsilon >0\) and \(\beta >0\), there exists \(L>0\) such that

$$\begin{aligned} \int _{-L}^{L}\frac{1}{\sqrt{\pi }}e^{-x^2}dx\ge 1-\beta \epsilon . \end{aligned}$$

Therefore, for any \(s>0\), we have

$$\begin{aligned} \int _{-L\sqrt{4d_2s}}^{L\sqrt{4d_2s}}\frac{1}{\sqrt{4\pi d_2s}}e^{-\frac{x^2}{4d_2s}}dx\ge 1-\beta \epsilon . \end{aligned}$$

Let \(t_1>t_0\) be sufficiently large. Then, for \(t>t_1\), the solution \(u^{(0)}_2(t,x,\phi )\) of (2.5) satisfies the integral equation

$$\begin{aligned} \begin{aligned} u^{(0)}_2(t,x,\phi )=&\int _{-\infty }^{+\infty }k_2(t-t_1,x-y)u^{(0)}_2(t_1,y,\phi )dy\\&+\int _{t_1}^t\int _{-\infty }^{+\infty }k_2(t-s,x-y)u^{(0)}_2(s,y,\phi )\left[ \rho +R^{(0)}(s,y)-u^{(0)}_2(s,y,\phi )\right] dyds, \end{aligned} \end{aligned}$$
(5.13)

where \(\rho >3r(\infty )-r(-\infty )\) is a real number and

$$\begin{aligned} k_2(t,x)=\frac{1}{\sqrt{4\pi d_2t}}e^{-\rho t-\frac{x^2}{4d_2t}}. \end{aligned}$$
(5.14)

It follows from (5.7) and (5.13) that for any \(t>t_1\),

$$\begin{aligned} \begin{aligned} u^{(0)}_2(t,x,\phi )\ge&\int _{-\infty }^{+\infty }k_2(t-t_1,x-y)w(t_1-t_0^*,y)dy\\&+\int _{t_1}^t\int _{-\infty }^{+\infty }k_2(t-s,x-y)w(s-t_0^*,y)\left[ \rho +R^{(0)}(s,y)-w(s-t_0^*,y)\right] dyds. \end{aligned} \end{aligned}$$
(5.15)

For \(t>t_1\) and xy satisfying

$$\begin{aligned} \begin{array}{lll} \ell +\sigma (\mu _1)+\psi _2(\mu _1)(t_1-t_0^*)+L\sqrt{4d_2(t-t_1)}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +\sigma (\mu _2)+\psi _2(\mu _2)(t_1-t_0^*)+3\pi /\gamma -L\sqrt{4d_2(t-t_1)} \end{array} \end{aligned}$$
(5.16)

and

$$\begin{aligned} -L\sqrt{4d_2(t-t_1)}\le y\le L\sqrt{4d_2(t-t_1)}, \end{aligned}$$
(5.17)

we have that

$$\begin{aligned} \ell +\sigma (\mu _1)+\psi _2(\mu _1)(t_1-t_0^*)\le x-y\le \ell +\sigma (\mu _2)+\psi _2(\mu _2)(t_1-t_0^*)+3\pi /\gamma . \qquad \end{aligned}$$
(5.18)

It follows from (5.8) and (5.18) that

$$\begin{aligned} \begin{aligned}&\int _{-\infty }^{+\infty }k_2(t-t_1,x-y)w(t_1-t_0^*,y)dy\\&\quad =\int _{-\infty }^{+\infty }k_2(t-t_1,y)w(t_1-t_0^*,x-y)dy\\&\qquad \ge e^{-\rho (t-t_1)}\int _{-L\sqrt{4d_2(t-t_1)}}^{L\sqrt{4d_2(t-t_1)}} \frac{1}{\sqrt{4\pi d_2(t-t_1)}}e^{-\frac{y^2}{4d_2(t-t_1)}}w(t_1-t_0^*,x-y)dy\\&\quad = \beta e^{-\rho (t-t_1)}\int _{-L\sqrt{4d_2(t-t_1)}}^{L\sqrt{4d_2(t-t_1)}} \frac{1}{\sqrt{4\pi d_2(t-t_1)}}e^{-\frac{y^2}{4d_2(t-t_1)}}dy\\&\quad \ge (1-\beta \epsilon )\beta e^{-\rho (t-t_1)} \end{aligned} \end{aligned}$$
(5.19)

for all x satisfying (5.16). For \(t>t_1\) and xy satisfying

$$\begin{aligned} \begin{array}{lll} \ell +\sigma (\mu _1)+\psi _2(\mu _1)(s-t_0^*)+L\sqrt{4d_2(t-s)}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +\sigma (\mu _2)+\psi _2(\mu _2)(s-t_0^*)+3\pi /\gamma -L\sqrt{4d_2(t-s)},\ \ \forall s\in [t_1,t] \end{array} \end{aligned}$$
(5.20)

and

$$\begin{aligned} -L\sqrt{4d_2(t-s)}\le y\le L\sqrt{4d_2(t-s)},\ \ \forall s\in [t_1,t], \end{aligned}$$
(5.21)

we have

$$\begin{aligned}&\ell +\sigma (\mu _1)+\psi _2(\mu _1)(s-t_0^*)\nonumber \\&\quad \le x-y\le \ell +\sigma (\mu _2)+\psi _2(\mu _2)(s-t_0^*)+3\pi /\gamma ,\ \ \forall s\in [t_1,t] \end{aligned}$$
(5.22)

and

$$\begin{aligned} x-y-cs\ge \ell +\sigma (\mu _1)+\psi _2(\mu _1)(s-t_0^*)-cs>\ell +\sigma (\mu _1)+\psi _2(\mu _1)T_0>\ell ,\ \ \forall s\in [t_1,t]. \nonumber \\ \end{aligned}$$
(5.23)

Then it follows from (5.8), (5.22) and (5.23) that

$$\begin{aligned} \begin{aligned}&\int _{t_1}^t\int _{-\infty }^{+\infty }k_2(t-s,x-y)w(s-t_0^*,y)\left[ \rho +R^{(0)}(s,y)-w(s-t_0^*,y)\right] dyds\\&\quad =\int _{t_1}^t\int _{-\infty }^{+\infty }k_2(t-s,y)w(s-t_0^*,x-y)\left[ \rho +R^{(0)}(s,x-y)-w(s-t_0^*,x-y)\right] dyds\\&\quad \ge \int _{t_1}^te^{-\rho (t-s)}\int _{-L\sqrt{4d_2(t-s)}}^{L\sqrt{4d_2(t-s)}} \frac{1}{\sqrt{4\pi d_2(t-s)}}e^{-\frac{y^2}{4d_2(t-s)}}w(s-t_0^*,x-y)\\&\qquad \times \left[ \rho +R^{(0)}(s,x-y)-w(s-t_0^*,x-y)\right] dyds\\&\quad =\beta \int _{t_1}^te^{-\rho (t-s)}\int _{-L\sqrt{4d_2(t-s)}}^{L\sqrt{4d_2(t-s)}} \frac{1}{\sqrt{4\pi d_2(t-s)}}e^{-\frac{y^2}{4d_2(t-s)}}\left[ \rho +R^{(0)}(s,x-y)-\beta \right] dyds\\&\quad \ge \beta (\rho +r^{(0)}(\infty )-\mu _{2,0}^*(\infty )\epsilon -\beta )\int _{t_1}^te^{-\rho (t-s)}\int _{-L\sqrt{4d_2(t-s)}}^{L\sqrt{4d_2(t-s)}} \frac{1}{\sqrt{4\pi d_2(t-s)}}e^{-\frac{y^2}{4d_2(t-s)}}dyds\\&\quad \ge \beta (1-\beta \epsilon )(\rho +r^{(0)}(\infty )-\mu _{2,0}^*(\infty )\epsilon -\beta )\int _{t_1}^te^{-\rho (t-s)}ds \end{aligned} \end{aligned}$$
(5.24)

for all x satisfying (5.20). Here we have used the fact that for x satisfying (5.20) and y satisfying (5.21),

$$\begin{aligned} R^{(0)}(s,x-y)>r^{(0)}(\ell )>r^{(0)}(\infty )-\frac{\epsilon }{2d_2}c_{2,0}^*(\infty )=r^{(0)}(\infty )-\mu _{2,0}^*(\infty )\epsilon . \end{aligned}$$

By (5.15), (5.19) and (5.24), we obtain that

$$\begin{aligned} u^{(0)}_2(t,x,\phi )\ge {\hat{v}}_2^{(1)}(t) \end{aligned}$$
(5.25)

for all \(t>t_1\) and x satisfying (5.16) and (5.20), where

$$\begin{aligned} {\hat{v}}_2^{(1)}(t)= & {} \beta (1-\beta \epsilon )e^{-\rho (t-t_1)} +\beta (1-\beta \epsilon )(\rho +r^{(0)}(\infty )\nonumber \\&-\mu _{2,0}^*(\infty )\epsilon -\beta )\int _{t_1}^te^{-\rho (t-s)}ds. \end{aligned}$$
(5.26)

It then further follows from induction and (5.13) that

$$\begin{aligned} u^{(0)}_2(t,x,\phi )\ge {\hat{v}}_2^{(n)}(t) \end{aligned}$$
(5.27)

for all \(t>t_1\) and x satisfying (5.16) and

$$\begin{aligned} \begin{array}{lll} \ell +\sigma (\mu _1)+\psi _2(\mu _1)(s-t_0^*)+nL\sqrt{4d_2(t-s)}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +\sigma (\mu _2)+\psi _2(\mu _2)(s-t_0^*)+3\pi /\gamma -nL\sqrt{4d_2(t-s)}, \ \forall s\in [t_1, t], \end{array} \end{aligned}$$
(5.28)

where

$$\begin{aligned} \begin{aligned} {\hat{v}}_2^{(n)}(t)=&\beta (1-\beta \epsilon )e^{-\rho (t-t_1)} +(1-\beta \epsilon )\int _{t_1}^te^{-\rho (t-s)}{\hat{v}}_2^{(n-1)}(s)\\&\times \left[ \rho +r^{(0)}(\infty )-\mu _{2,0}^*(\infty )\epsilon -{\hat{v}}_2^{(n-1)}(s)\right] ds. \end{aligned} \end{aligned}$$
(5.29)

Direct calculations and induction show that

$$\begin{aligned} {\hat{v}}_2^{(n)}(t)={\hat{a}}^{(n)}_2+{\hat{b}}^{(n)}_2(t)e^{-\rho (t-t_1)}, \end{aligned}$$
(5.30)

where

$$\begin{aligned} {\hat{a}}^{(n)}_2= & {} {\hat{a}}^{(n-1)}_2(1-\beta \epsilon )(\rho +r^{(0)}(\infty )-\mu _{2,0}^*(\infty )\epsilon -{\hat{a}}^{(n-1)}_2)/\rho , \end{aligned}$$
(5.31)
$$\begin{aligned} {\hat{a}}^{(1)}_2= & {} \beta (1-\beta \epsilon )(\rho +r^{(0)}(\infty )-\mu _{2,0}^*(\infty )\epsilon -\beta )/\rho \end{aligned}$$
(5.32)

and \({\hat{b}}^{(n)}_2(t)\) is a sum of products of polynomials and exponential functions of the form \(e^{-j\rho (t-t_1)}\) with j being a non-negative integer. Therefore,

$$\begin{aligned} \lim _{t\rightarrow \infty }{\hat{v}}_2^{(n)}(t)={\hat{a}}_2^{(n)} \end{aligned}$$
(5.33)

and \({\hat{a}}_2^{(n)}\le r(\infty )\) for all \(n\ge 1\). Let \({\hat{a}}_2^{(0)}=\beta \). Then for small \(\epsilon \) and \(\beta \), we have

$$\begin{aligned} {\hat{a}}_2^{(1)}-{\hat{a}}_2^{(0)}=(r^{(0)}(\infty )-\mu _{2,0}^*(\infty )\epsilon -\beta -\beta ^2\rho \epsilon )/\rho >0. \end{aligned}$$
(5.34)

It follows from (5.34) and induction that

$$\begin{aligned} \begin{aligned}&{\hat{a}}_2^{(n+1)}-{\hat{a}}_2^{(n)}\\&\quad =\left[ {\hat{a}}^{(n)}_2(\rho +r^{(0)}(\infty )-\mu _{2,0}^*(\infty )\epsilon -{\hat{a}}^{(n)}_2)\right. \\&\qquad \left. -{\hat{a}}^{(n-1)}_2(\rho +r^{(0)}(\infty )-\mu _{2,0}^*(\infty )\epsilon -{\hat{a}}^{(n-1)}_2)\right] \frac{1-\beta \epsilon }{\rho }\\&\quad =({\hat{a}}_2^{(n)}-{\hat{a}}_2^{(n-1)})\left[ \rho +r^{(0)}(\infty )-\mu _{2,0}^*(\infty )\epsilon -{\hat{a}}^{(n-1)}_2-{\hat{a}}^{(n)}_2\right] \frac{1-\beta \delta }{\rho }\\&\quad >0,\ \ \ \forall n\ge 1. \end{aligned} \end{aligned}$$
(5.35)

Thus, \(\left\{ {\hat{a}}_2^{(n)}\right\} _{n=0}^{\infty }\) is increasing and \(\beta <{\hat{a}}_2^{(n)}\le r(\infty )\) for all \(n\ge 1\). So, \(\lim _{n\rightarrow \infty }{\hat{a}}_2^{(n)}\) exists. Let

$$\begin{aligned} \lim _{n\rightarrow \infty }{\hat{a}}_2^{(n)}={\hat{a}}_2^*. \end{aligned}$$
(5.36)

Then \(\beta \le {\hat{a}}_2^*\le r(\infty )\) and by (5.31), we obtain that

$$\begin{aligned} {\hat{a}}^*_2={\hat{a}}^*_2(1-\beta \epsilon )(\rho +r^{(0)}(\infty )-\mu _{2,0}^*(\infty )\epsilon -{\hat{a}}^*_2)/\rho . \end{aligned}$$
(5.37)

Therefore, it follows from (5.37) that

$$\begin{aligned} {\hat{a}}^*_2=r^{(0)}(\infty )-\left( \mu _{2,0}^*(\infty )+\frac{\beta \rho }{1-\beta \epsilon }\right) \epsilon . \end{aligned}$$
(5.38)

Thus, by (5.30), (5.33), (5.36) and (5.38), we obtain that there exist a positive integer N and \(t_2>t_1\) such that

$$\begin{aligned} {\hat{v}}^{(n)}_2(t)>r^{(0)}(\infty )-\left( 1+\mu _{2,0}^*(\infty )+\frac{\beta \rho }{1-\beta \epsilon }\right) \epsilon ,\ \ \forall t>t_2,\ n\ge N. \end{aligned}$$
(5.39)

Clearly, if

$$\begin{aligned} \begin{array}{lll} \ell +\sigma (\mu _1)+\psi _2(\mu _1)(t-t_0^*)+NL\sqrt{4d_2(t-t_1)}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +\sigma (\mu _2)+\psi _2(\mu _2)(t_1-t_0^*)+3\pi /\gamma -NL\sqrt{4d_2(t-t_1)}, \end{array} \end{aligned}$$
(5.40)

then (5.16) holds and (5.28) with n replaced by N also holds. Choose \(t_1=ml+t_0^*\) and \(t-t_1=l\), where \(m>1\) and \(l>0\) are both sufficiently large. Then we can rewrite (5.40) as

$$\begin{aligned} \begin{array}{lll} \ell +\sigma (\mu _1)+\psi _2(\mu _1)l(m+1)+NL\sqrt{4d_2l}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +\sigma (\mu _2)+ml\psi _2(\mu _2)+3\pi /\gamma -NL\sqrt{4d_2l}, \end{array} \end{aligned}$$
(5.41)

that is,

$$\begin{aligned} \begin{array}{lll} (t_0^*+l(m+1))\left[ \psi _2(\mu _1)+\frac{\ell +\sigma (\mu _1)}{l(m+1)}+\frac{NL\sqrt{4d_2}}{(m+1)\sqrt{l}}\right] \frac{l(m+1)}{t_0^*+l(m+1)}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le (t_0^*+l(m+1))\left[ \frac{m}{m+1}\psi _2(\mu _2)+\frac{\ell +\sigma (\mu _2)+3\pi /\gamma }{l(m+1)}-\frac{NL\sqrt{4d_2}}{(m+1)\sqrt{l}}\right] \frac{l(m+1)}{t_0^*+l(m+1)}. \end{array} \end{aligned}$$
(5.42)

Now for any given \(\varepsilon \) with \(0<\varepsilon <(c_{2,0}^*(\infty )-c_1^*(\infty )-\varepsilon ^{(0)})/2\), choose \(\epsilon \) sufficiently small such that \(\epsilon <\varepsilon /3\). Then there exist \(l_0\) and \(m_0\) sufficiently large such that for any \(m>m_0,\,\,l>l_0\) and \(t=t_0^*+l(m+1)>t_2\), we have

$$\begin{aligned}&(t_0^*+l(m+1))\left[ \psi _2(\mu _1)+\frac{\ell +\sigma (\mu _1)}{l(m+1)}+\frac{NL\sqrt{4d_2}}{(m+1)\sqrt{l}}\right] \frac{l(m+1)}{t_0^*+l(m+1)}\\&\quad<t(\psi _2(\mu _1)+\epsilon )=t(c_1^*(\infty )+\varepsilon ^{(0)}+\epsilon +\epsilon )\\&\quad <t(c_1^*(\infty )+\varepsilon ^{(0)}+\varepsilon ) \end{aligned}$$

and

$$\begin{aligned}&(t_0^*+l(m+1))\left[ \frac{m}{m+1}\psi _2(\mu _2)+\frac{\ell +\sigma (\mu _2)+3\pi /\gamma }{l(m+1)}-\frac{NL\sqrt{4d_2}}{(m+1)\sqrt{l}}\right] \frac{l(m+1)}{t_0^*+l(m+1)}\\&\quad>t(\psi _2(\mu _2)-\epsilon )=t(c_{2,0}^*(\infty )-2\epsilon -\epsilon )\\&\quad >t(c_{2,0}^*(\infty )-\varepsilon ). \end{aligned}$$

Let \(t_3=t_0^*+l_0(m_0+1)\). If \(t>t_3\), then \(t(c_1^*(\infty )+\varepsilon ^{(0)}+\varepsilon )\le x\le t(c_{2,0}^*(\infty )-\varepsilon )\) implies that (5.40) holds. Thus, by (5.27) and (5.39), we obtain that

$$\begin{aligned}&\lim _{t\rightarrow \infty }\left[ \inf _{t(c_1^*(\infty )+\varepsilon ^{(0)}+\varepsilon )\le x\le t(c_{2,0}^*(\infty )-\varepsilon )}u_2^{(0)}(t,x,\phi )\right] \nonumber \\&\quad \ge r^{(0)}(\infty )-\left( 1+\mu _{2,0}^*(\infty )+\frac{\beta \rho }{1-\beta \epsilon }\right) \epsilon . \end{aligned}$$
(5.43)

Because \(\epsilon \) can be arbitrarily small and (5.43), we have actually shown that

$$\begin{aligned} \lim _{t\rightarrow \infty }\left[ \inf _{t(c_1^*(\infty )+\varepsilon ^{(0)}+\varepsilon )\le x\le t(c_{2,0}^*(\infty )-\varepsilon )}u_2^{(0)}(t,x,\phi )\right] \ge r^{(0)}(\infty ). \end{aligned}$$
(5.44)

Since \(\varepsilon ^{(0)}>0\) is arbitrary, we have actually shown that for every \(\varepsilon \) with \(0<\varepsilon <(c_2^*(\infty )-c_1^*(\infty ))/2\),

$$\begin{aligned} \lim _{t\rightarrow \infty }\left[ \inf _{t(c_1^*(\infty )+\varepsilon )\le x\le t(c_{2}^*(\infty )-\varepsilon )}u_2^{(0)}(t,x,\phi )\right] \ge r(\infty ). \end{aligned}$$
(5.45)

It follows from \(u_2^{(0)}(t,x,\phi )\le r(\infty )\) for all \((t,x)\in [0,+\infty )\times {\mathbb {R}}\) that

$$\begin{aligned} \lim _{t\rightarrow \infty }\left[ \sup _{t(c_1^*(\infty )+\varepsilon )\le x\le t(c_{2}^*(\infty )-\varepsilon )}\left| r(\infty )-u_2^{(0)}(t,x,\phi )\right| \right] =0. \end{aligned}$$
(5.46)

The proof of Lemma 2.2 is completed. \(\square \)

Proof of Lemma 2.5

For any \(\epsilon \) with \(0<\epsilon <\min \left\{ \frac{1}{3},r^{(1)}(\infty ),\frac{c_{1,1}^*(\infty )-c-\varepsilon ^{(1)}}{3}\right\} \), let \(\ell \) be a real number such that

$$\begin{aligned} c_{1,1}^*(\ell )=c_{1,1}^*(\infty )-\epsilon . \end{aligned}$$

We choose \(0<\mu _1<\mu _2<\mu _{1,1}^*(\ell )\) such that \(\psi _1(\mu _1)=c+\varepsilon ^{(1)}+\epsilon \) and \(\psi _1(\mu _2)=c_{1,1}^*(\infty )-2\epsilon \). By Lemma 2.4, for any \(\mu \in [\mu _1,\mu _2]\) and sufficiently small \(\beta >0\) and \(\gamma >0\), \(\frac{\beta }{\varphi (\mu ;\sigma (\mu ))}\varphi (\mu ;x-\ell -\psi _1(\mu )t)\) with \(\varphi \) given by (2.7) is a continuous weak lower solution of (2.34).

Since \(\phi _1(x)\ge 0\) and \(\phi _1(x)\not \equiv 0\), \(u^{(1)}_1(t,x,\phi )>0\) for all \((t,x)\in (0,+\infty )\times {\mathbb {R}}\). Choose \(T_1<t_0<T_1+\frac{\sigma (\mu _1)}{\psi _1(\mu _1)}\), and choose sufficiently small \(\beta >0\) and \(\gamma >0\) such that

$$\begin{aligned} \frac{\pi /\gamma +\sigma (\mu _1)-\sigma (\mu _2)}{\psi _1(\mu _2)-\psi _1(\mu _1)}>T_1 \end{aligned}$$
(5.47)

and

$$\begin{aligned} u^{(1)}_1(t_0,x,\phi )\ge \beta ,\ \ \ \forall x\in [\ell +\psi _1(\mu _1)T_1,\ell +4\pi /\gamma +\psi _1(\mu _2)T_1]. \end{aligned}$$
(5.48)

Define

$$\begin{aligned} w(T_1,x)=\left\{ \begin{array}{lll} \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _1(\mu _1)T_1)\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +\psi _1(\mu _1)T_1\le x\le \ell +\sigma (\mu _1)+\psi _1(\mu _1)T_1;\\ \\ \beta \ \ \ \ \text{ if }\ \ell +\sigma (\mu _1)+\psi _1(\mu _1)T_1\le x\le \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _1(\mu _2)T_1;\\ \\ \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _1(\mu _2)T_1)\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _1(\mu _2)T_1\le x\le \ell +4\pi /\gamma +\psi _1(\mu _2)T_1;\\ \\ 0 \ \ \ \ \ \text{ elsewhere }. \end{array} \right. \end{aligned}$$

It is easily seen that

$$\begin{aligned} w(T_1,x)\ge \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _1(\mu _1)T_1-s),\ \ \forall s\in [0,2\pi /\gamma ] \end{aligned}$$

and

$$\begin{aligned} w(T_1,x)\ge \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _1(\mu _2)T_1+s),\ \ \forall s\in [0,2\pi /\gamma ]. \end{aligned}$$

It follows from (5.48) and Lemma 2.4 that for any \(t\ge t_0\),

$$\begin{aligned}&u^{(1)}_1(t,x,\phi )\nonumber \\&\quad \ge \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _1(\mu _1)(T_1+t-t_0)-s),\ \ \forall s\in [0,2\pi /\gamma ] \quad \qquad \qquad \end{aligned}$$
(5.49)

and

$$\begin{aligned}&u^{(1)}_1(t,x,\phi )\ge \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma \nonumber \\&\quad -\psi _1(\mu _2)(T_1+t-t_0)+s),\ \ \forall s\in [0,2\pi /\gamma ]. \end{aligned}$$
(5.50)

Inequalities (5.49) and (5.50) imply that for any \(t\ge t_0\),

$$\begin{aligned} u^{(1)}_1(t,x,\phi )\ge \left\{ \begin{array}{lll} \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _1(\mu _1)(T_1+t-t_0))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +\psi _1(\mu _1)(T_1+t-t_0)\le x\le \ell +\sigma (\mu _1)+\psi _1(\mu _1)(T_1+t-t_0);\\ \\ \beta \ \ \ \ \text{ if }\ \ell +\sigma (\mu _1)+\psi _1(\mu _1)(T_1+t-t_0)\le x\le \ell +2\pi /\gamma \\ \\ \ \ \ \ \ \ \ \ \ +\sigma (\mu _1)+\psi _1(\mu _1)(T_1+t-t_0);\\ \\ 0 \ \ \ \ \ \text{ elsewhere } \end{array} \right. \end{aligned}$$
(5.51)

and

$$\begin{aligned} u^{(1)}_1(t,x,\phi )\ge \left\{ \begin{array}{lll} \beta \ \ \ \ \text{ if }\ \ell +\pi /\gamma +\sigma (\mu _2)+\psi _1(\mu _2)(T_1+t-t_0)\le x\le \ell +3\pi /\gamma \\ \ \ \ \ \ \ \ \ \ +\sigma (\mu _2)+\psi _1(\mu _2)(T_1+t-t_0);\\ \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _1(\mu _2)(T_1+t-t_0))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _1(\mu _2)(T_1+t-t_0)\le x\le \ell +4\pi /\gamma \\ \ \ \ \ \ \ \ \ \ +\psi _1(\mu _2)(T_1+t-t_0);\\ 0 \ \ \ \ \ \text{ elsewhere }. \end{array} \right. \end{aligned}$$
(5.52)

Let

$$\begin{aligned} h=\frac{\pi /\gamma +\sigma (\mu _1)-\sigma (\mu _2)}{\psi _1(\mu _2)-\psi _1(\mu _1)}-T_1. \end{aligned}$$

Then (5.47) implies that \(h>0\). Since

$$\begin{aligned} \ell +2\pi /\gamma +\sigma (\mu _1)+\psi _1(\mu _1)(T_1+t-t_0)\ge \ell +\pi /\gamma +\sigma (\mu _2)+\psi _1(\mu _2)(T_1+t-t_0) \end{aligned}$$

for all \(t\in [t_0, t_0+h]\), inequalities (5.51) and (5.52) imply that

$$\begin{aligned} u^{(1)}_1(t,x,\phi )\ge w(t-t_0^*,x) \end{aligned}$$
(5.53)

for all \(t\in [t_0, t_0+h]\), where \(t_0^*=t_0-T_1\) and

$$\begin{aligned} w(t-t^*_0,x)=\left\{ \begin{array}{lll} \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _1(\mu _1)(t-t_0^*))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +\psi _1(\mu _1)(t-t_0^*)\le x\le \ell +\sigma (\mu _1)+\psi _1(\mu _1)(t-t_0^*);\\ \\ \beta \ \ \ \ \text{ if }\ \ell +\sigma (\mu _1)+\psi _1(\mu _1)(t-t_0^*)\le x\le \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _1(\mu _2)(t-t_0^*);\\ \\ \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _1(\mu _2)(t-t_0^*))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _1(\mu _2)(t-t_0^*)\le x\le \ell +4\pi /\gamma +\psi _1(\mu _2)(t-t_0^*);\\ \\ 0 \ \ \ \ \ \text{ elsewhere }. \end{array} \right. \nonumber \\ \end{aligned}$$
(5.54)

We claim that (5.53) holds true for all \(t\ge t_0\). Assume that (5.53) is valid for \(t\in [t_0, t_0+nh]\) for some positive integer n. Then for any \(s\in [0, 2\pi /\gamma +(\psi _1(\mu _2)-\psi _1(\mu _1))(T_1+nh)]\),

$$\begin{aligned} w(T_1+nh,x)\ge \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _1(\mu _1)(T_1+nh)-s) \end{aligned}$$

and

$$\begin{aligned} w(T_1+nh,x)\ge \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _1(\mu _2)(T_1+nh)+s). \end{aligned}$$

Therefore, Lemma 2.4 implies that

$$\begin{aligned} u^{(1)}_1(t,x,\phi )\ge \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _1(\mu _1)(T_1+nh)-\psi _1(\mu _1)(t-(t_0+nh))-s) \nonumber \\ \end{aligned}$$
(5.55)

and

$$\begin{aligned}&u^{(1)}_1(t,x,\phi )\ge \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma \nonumber \\&\quad -\psi _1(\mu _2)(T_1+nh)-\psi _1(\mu _2)(t-(t_0+nh))+s) \end{aligned}$$
(5.56)

for all \(t\ge t_0+nh\) and \(s\in [0, 2\pi /\gamma +(\psi _1(\mu _2)-\psi _1(\mu _1))(T_1+nh)]\). Inequalities (5.55) and (5.56) imply that for \(t\ge t_0+nh\),

$$\begin{aligned} u^{(1)}_1(t,x,\phi )\ge \left\{ \begin{array}{lll} \frac{\beta }{\varphi (\mu _1; \sigma (\mu _1))}\varphi (\mu _1; x-\ell -\psi _1(\mu _1)(T_1+t-t_0))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +\psi _1(\mu _1)(T_1+t-t_0)\le x\le \ell +\sigma (\mu _1)+\psi _1(\mu _1)(T_1+t-t_0);\\ \\ \beta \ \ \ \ \text{ if }\ \ell +\sigma (\mu _1)+\psi _1(\mu _1)(T_1+t-t_0)\le x\le \ell +2\pi /\gamma \\ \\ \ \ \ \ \ \ \ \ \ +\sigma (\mu _1)+\psi _1(\mu _1)(t-(t_0+nh))+\psi _1(\mu _2)(T_1+nh);\\ \\ 0 \ \ \ \ \ \text{ elsewhere } \end{array} \right. \end{aligned}$$
(5.57)

and

$$\begin{aligned} u^{(1)}_1(t,x,\phi )\ge \left\{ \begin{array}{lll} \beta \ \ \ \ \text{ if }\ \ell +\pi /\gamma +\sigma (\mu _2)+\psi _1(\mu _2)(t-(t_0+nh))+\psi _1(\mu _1)(T_1+nh)\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _1(\mu _2)(T_1+t-t_0);\\ \\ \frac{\beta }{\varphi (\mu _2; \sigma (\mu _2))}\varphi (\mu _2; x-\ell -3\pi /\gamma -\psi _1(\mu _2)(T_1+t-t_0))\\ \\ \ \ \ \ \ \ \text{ if }\ \ell +3\pi /\gamma +\sigma (\mu _2)+\psi _1(\mu _2)(T_1+t-t_0)\le x\le \ell +4\pi /\gamma \\ \\ \ \ \ \ \ \ \ \ \ +\psi _1(\mu _2)(T_1+t-t_0);\\ \\ 0 \ \ \ \ \ \text{ elsewhere }. \end{array} \right. \end{aligned}$$
(5.58)

Since

$$\begin{aligned} \begin{aligned}&\ell +2\pi /\gamma +\sigma (\mu _1)+\psi _1(\mu _1)(t-(t_0+nh))+\psi _1(\mu _2)(T_1+nh)\\&\ge \ell +\pi /\gamma +\sigma (\mu _2)+\psi _1(\mu _2)(t-(t_0+nh))+\psi _1(\mu _1)(T_1+nh) \end{aligned} \end{aligned}$$

for all \(t\in [t_0+nh,t_0+(2n+1)h+2T_1]\), inequalities (5.57) and (5.58) imply that (5.53) holds true for all \(t\in [t_0+nh,t_0+(n+1)h]\). By induction, (5.53) is true for all \(t\ge t_0\).

For the chosen \(\epsilon >0\) and \(\beta >0\), there exists \(L>0\) such that

$$\begin{aligned} \int _{-L}^{L}\frac{1}{\sqrt{\pi }}e^{-x^2}dx\ge 1-\beta \epsilon . \end{aligned}$$

Therefore, for any \(s>0\), we have

$$\begin{aligned} \int _{-L\sqrt{4d_1s}}^{L\sqrt{4d_1s}}\frac{1}{\sqrt{4\pi d_1s}}e^{-\frac{x^2}{4d_1s}}dx\ge 1-\beta \epsilon . \end{aligned}$$

Let \(t_1>t_0\) be sufficiently large. Then, for \(t>t_1\), the solution \(u^{(1)}_1(t,x,\phi )\) of (2.34) satisfies the integral equation

$$\begin{aligned} u^{(1)}_1(t,x,\phi )= & {} \int _{-\infty }^{+\infty }k_1(t-t_1,x-y)u^{(1)}_1(t_1,y,\phi )dy\nonumber \\&+\int _{t_1}^t\int _{-\infty }^{+\infty }k_1(t-s,x-y)u^{(1)}_1(s,y,\phi )\nonumber \\&\left[ \rho +R^{(1)}(s,y)-u^{(1)}_1(s,y,\phi )\right] dyds, \end{aligned}$$
(5.59)

where \(\rho >3r(\infty )-r(-\infty )\) is a real number and

$$\begin{aligned} k_1(t,x)=\frac{1}{\sqrt{4\pi d_1t}}e^{-\rho t-\frac{x^2}{4d_1t}}. \end{aligned}$$
(5.60)

It follows from (5.53) and (5.59) that for any \(t>t_1\),

$$\begin{aligned} \begin{aligned} u^{(1)}_1(t,x,\phi )\ge&\int _{-\infty }^{+\infty }k_1(t-t_1,x-y)w(t_1-t_0^*,y)dy\\&+\int _{t_1}^t\int _{-\infty }^{+\infty }k_1(t-s,x-y)w(s-t_0^*,y)\\&\quad \left[ \rho +R^{(1)}(s,y)-w(s-t_0^*,y)\right] dyds. \end{aligned} \end{aligned}$$
(5.61)

For \(t>t_1\) and xy satisfying

$$\begin{aligned} \begin{array}{lll} \ell +\sigma (\mu _1)+\psi _1(\mu _1)(t_1-t_0^*)+L\sqrt{4d_1(t-t_1)}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +\sigma (\mu _2)+\psi _1(\mu _2)(t_1-t_0^*)+3\pi /\gamma -L\sqrt{4d_1(t-t_1)} \end{array} \end{aligned}$$
(5.62)

and

$$\begin{aligned} -L\sqrt{4d_1(t-t_1)}\le y\le L\sqrt{4d_1(t-t_1)}, \end{aligned}$$
(5.63)

we have that

$$\begin{aligned} \ell +\sigma (\mu _1)+\psi _1(\mu _1)(t_1-t_0^*)\le x-y\le \ell +\sigma (\mu _2)+\psi _1(\mu _2)(t_1-t_0^*)+3\pi /\gamma . \end{aligned}$$
(5.64)

It follows from (5.54) and (5.64) that

$$\begin{aligned} \begin{aligned}&\int _{-\infty }^{+\infty }k_1(t-t_1,x-y)w(t_1-t_0^*,y)dy\\&\quad =\int _{-\infty }^{+\infty }k_1(t-t_1,y)w(t_1-t_0^*,x-y)dy\\&\quad \ge e^{-\rho (t-t_1)}\int _{-L\sqrt{4d_1(t-t_1)}}^{L\sqrt{4d_1(t-t_1)}} \frac{1}{\sqrt{4\pi d_1(t-t_1)}}e^{-\frac{y^2}{4d_1(t-t_1)}}w(t_1-t_0^*,x-y)dy\\&\quad = \beta e^{-\rho (t-t_1)}\int _{-L\sqrt{4d_1(t-t_1)}}^{L\sqrt{4d_1(t-t_1)}} \frac{1}{\sqrt{4\pi d_1(t-t_1)}}e^{-\frac{y^2}{4d_1(t-t_1)}}dy\\&\quad \ge (1-\beta \epsilon )\beta e^{-\rho (t-t_1)} \end{aligned} \end{aligned}$$
(5.65)

for all x satisfying (5.62). For \(t>t_1\) and xy satisfying

$$\begin{aligned} \begin{array}{lll} \ell +\sigma (\mu _1)+\psi _1(\mu _1)(s-t_0^*)+L\sqrt{4d_1(t-s)}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +\sigma (\mu _2)+\psi _1(\mu _2)(s-t_0^*)+3\pi /\gamma -L\sqrt{4d_1(t-s)},\ \ \ \forall s\in [t_1,t] \end{array} \end{aligned}$$
(5.66)

and

$$\begin{aligned} -L\sqrt{4d_1(t-s)} \le y\le L\sqrt{4d_1(t-s)},\ \ \ \forall s\in [t_1,t], \end{aligned}$$
(5.67)

we have

$$\begin{aligned}&\ell +\sigma (\mu _1)+\psi _1(\mu _1)(s-t_0^*)\nonumber \\&\quad \le x-y\le \ell +\sigma (\mu _2)+\psi _1(\mu _2)(s-t_0^*)+3\pi /\gamma ,\ \ \ \forall s\in [t_1,t] \end{aligned}$$
(5.68)

and

$$\begin{aligned}&x-y-cs\ge \ell +\sigma (\mu _1)+\psi _1(\mu _1)(s-t_0^*)-cs>\ell \nonumber \\&\quad +\sigma (\mu _1)+\psi _1(\mu _1)T_1>\ell ,\ \ \ \forall s\in [t_1,t]. \end{aligned}$$
(5.69)

Then it follows from (5.54), (5.68) and (5.69) that

$$\begin{aligned} \begin{aligned}&\int _{t_1}^t\int _{-\infty }^{+\infty }k_1(t-s,x-y)w(s-t_0^*,y)\left[ \rho +R^{(1)}(s,y)-w(s-t_0^*,y)\right] dyds\\&\quad =\int _{t_1}^t\int _{-\infty }^{+\infty }k_1(t-s,y)w(s-t_0^*,x-y)\left[ \rho +R^{(1)}(s,x-y)-w(s-t_0^*,x-y)\right] dyds\\&\quad \ge \int _{t_1}^te^{-\rho (t-s)}\int _{-L\sqrt{4d_1(t-s)}}^{L\sqrt{4d_1(t-s)}} \frac{1}{\sqrt{4\pi d_1(t-s)}}e^{-\frac{y^2}{4d_1(t-s)}}w(s-t_0^*,x-y)\\&\qquad \times \left[ \rho +R^{(1)}(s,x-y)-w(s-t_0^*,x-y)\right] dyds\\&\quad = \beta \int _{t_1}^te^{-\rho (t-s)}\int _{-L\sqrt{4d_1(t-s)}}^{L\sqrt{4d_1(t-s)}} \frac{1}{\sqrt{4\pi d_1(t-s)}}e^{-\frac{y^2}{4d_1(t-s)}}\left[ \rho +R^{(1)}(s,x-y)-\beta \right] dyds\\&\quad \ge \beta (\rho +r^{(1)}(\infty )-\mu _{1,1}^*(\infty )\epsilon -\beta )\int _{t_1}^te^{-\rho (t-s)}\int _{-L\sqrt{4d_1(t-s)}}^{L\sqrt{4d_1(t-s)}} \frac{1}{\sqrt{4\pi d_1(t-s)}}e^{-\frac{y^2}{4d_1(t-s)}}dyds\\&\quad \ge \beta (1-\beta \epsilon )(\rho +r^{(1)}(\infty )-\mu _{1,1}^*(\infty )\epsilon -\beta )\int _{t_1}^te^{-\rho (t-s)}ds \end{aligned} \end{aligned}$$
(5.70)

for all x satisfying (5.66). Here we have used the fact that for x satisfying (5.66) and y satisfying (5.67),

$$\begin{aligned} R^{(1)}(s,x-y)>r^{(1)}(\ell )>r^{(1)}(\infty )-\frac{\epsilon }{2d_1}c_{1,1}^*(\infty )=r^{(1)}(\infty )-\mu _{1,1}^*(\infty )\epsilon . \end{aligned}$$

By (5.61), (5.65) and (5.70), we obtain that

$$\begin{aligned} u^{(1)}_1(t,x,\phi )\ge {\hat{v}}_1^{(1)}(t) \end{aligned}$$
(5.71)

for all \(t>t_1\) and x satisfying (5.62) and (5.66), where

$$\begin{aligned}&{\hat{v}}_1^{(1)}(t)=\beta (1-\beta \epsilon )e^{-\rho (t-t_1)} +\beta (1-\beta \epsilon )(\rho +r^{(1)}(\infty )\nonumber \\&\quad -\mu _{1,1}^*(\infty )\epsilon -\beta )\int _{t_1}^te^{-\rho (t-s)}ds. \end{aligned}$$
(5.72)

It then further follows from induction and (5.59) that

$$\begin{aligned} u^{(1)}_1(t,x,\phi )\ge {\hat{v}}_1^{(n)}(t) \end{aligned}$$
(5.73)

for all \(t>t_1\) and x satisfying (5.62) and

$$\begin{aligned} \begin{array}{lll} \ell +\sigma (\mu _1)+\psi _1(\mu _1)(s-t_0^*)+nL\sqrt{4d_1(t-s)}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +\sigma (\mu _2)+\psi _1(\mu _2)(s-t_0^*)+3\pi /\gamma -nL\sqrt{4d_1(t-s)}, \ \forall s\in [t_1, t], \end{array} \end{aligned}$$
(5.74)

where

$$\begin{aligned} \begin{aligned} {\hat{v}}_1^{(n)}(t)=&\beta (1-\beta \epsilon )e^{-\rho (t-t_1)} +(1-\beta \epsilon )\int _{t_1}^te^{-\rho (t-s)}{\hat{v}}_1^{(n-1)}(s)\\&\times \left[ \rho +r^{(1)}(\infty )-\mu _{1,1}^*(\infty )\epsilon -{\hat{v}}_1^{(n-1)}(s)\right] ds. \end{aligned} \end{aligned}$$
(5.75)

Direct calculations and induction show that

$$\begin{aligned} {\hat{v}}_1^{(n)}(t)={\hat{a}}^{(n)}_1+{\hat{b}}^{(n)}_1(t)e^{-\rho (t-t_1)}, \end{aligned}$$
(5.76)

where

$$\begin{aligned} {\hat{a}}^{(n)}_1= & {} {\hat{a}}^{(n-1)}_1(1-\beta \epsilon )(\rho +r^{(1)}(\infty )-\mu _{1,1}^*(\infty )\epsilon -{\hat{a}}^{(n-1)}_1)/\rho , \end{aligned}$$
(5.77)
$$\begin{aligned} {\hat{a}}^{(1)}_1= & {} \beta (1-\beta \epsilon )(\rho +r^{(1)}(\infty )-\mu _{1,1}^*(\infty )\epsilon -\beta )/\rho \end{aligned}$$
(5.78)

and \({\hat{b}}^{(n)}_1(t)\) is a sum of products of polynomials and exponential functions of the form \(e^{-j\rho (t-t_1)}\) with j being a non-negative integer. Therefore,

$$\begin{aligned} \lim _{t\rightarrow \infty }{\hat{v}}_1^{(n)}(t)={\hat{a}}_1^{(n)} \end{aligned}$$
(5.79)

and \({\hat{a}}_1^{(n)}\le r(\infty )\) for all \(n\ge 1\). Let \({\hat{a}}_1^{(0)}=\beta \). Then for small \(\epsilon \) and \(\beta \), we have

$$\begin{aligned} {\hat{a}}_1^{(1)}-{\hat{a}}_1^{(0)}=(r^{(1)}(\infty )-\mu _{1,1}^*(\infty )\epsilon -\beta -\beta ^2\rho \epsilon )/\rho >0. \end{aligned}$$
(5.80)

It follows from (5.80) and induction that

$$\begin{aligned} \begin{aligned}&{\hat{a}}_1^{(n+1)}-{\hat{a}}_1^{(n)}\\&\quad =\left[ {\hat{a}}^{(n)}_1(\rho +r^{(1)}(\infty )-\mu _{1,1}^*(\infty )\epsilon -{\hat{a}}^{(n)}_1) -{\hat{a}}^{(n-1)}_1(\rho +r^{(1)}(\infty )\right. \\&\qquad \left. -\mu _{1,1}^*(\infty )\epsilon -{\hat{a}}^{(n-1)}_1)\right] \frac{1-\beta \epsilon }{\rho }\\&\quad =({\hat{a}}_1^{(n)}-{\hat{a}}_1^{(n-1)})\left[ \rho +r^{(1)}(\infty )-\mu _{1,1}^*(\infty )\epsilon -{\hat{a}}^{(n-1)}_1-{\hat{a}}^{(n)}_1\right] \frac{1-\beta \delta }{\rho }\\&\quad >0,\ \ \ \forall n\ge 1. \end{aligned} \end{aligned}$$
(5.81)

Thus, \(\left\{ {\hat{a}}_1^{(n)}\right\} _{n=0}^{\infty }\) is increasing and \(\beta <{\hat{a}}_1^{(n)}\le r(\infty )\) for \(n\ge 1\). So, \(\lim _{n\rightarrow \infty }{\hat{a}}_1^{(n)}\) exists. Let

$$\begin{aligned} \lim _{n\rightarrow \infty }{\hat{a}}_1^{(n)}={\hat{a}}_1^*. \end{aligned}$$
(5.82)

Then \(\beta \le {\hat{a}}_1^*\le r(\infty )\) and by (5.77), we obtain that

$$\begin{aligned} {\hat{a}}^*_1={\hat{a}}^*_1(1-\beta \epsilon )(\rho +r^{(1)}(\infty )-\mu _{1,1}^*(\infty )\epsilon -{\hat{a}}^*_1)/\rho . \end{aligned}$$
(5.83)

Therefore, it follows from (5.83) that

$$\begin{aligned} {\hat{a}}^*_1=r^{(1)}(\infty )-\left( \mu _{1,1}^*(\infty )+\frac{\beta \rho }{1-\beta \epsilon }\right) \epsilon . \end{aligned}$$
(5.84)

Thus, by (5.76), (5.79), (5.82) and (5.84), we obtain that there exist a positive integer N and \(t_2>t_1\) such that

$$\begin{aligned} {\hat{v}}^{(n)}_1(t)>r^{(1)}(\infty )-\left( 1+\mu _{1,1}^*(\infty )+\frac{\beta \rho }{1-\beta \epsilon }\right) \epsilon ,\ \ \ \forall t>t_2,\ n\ge N. \end{aligned}$$
(5.85)

Clearly, if

$$\begin{aligned} \begin{array}{lll} \ell +\sigma (\mu _1)+\psi _1(\mu _1)(t-t_0^*)+NL\sqrt{4d_1(t-t_1)}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +\sigma (\mu _2)+\psi _1(\mu _2)(t_1-t_0^*)+3\pi /\gamma -NL\sqrt{4d_1(t-t_1)}, \end{array} \end{aligned}$$
(5.86)

then (5.62) holds and (5.74) with n replaced by N also holds. Choose \(t_1=ml+t_0^*\) and \(t-t_1=l\), where \(m>1\) and \(l>0\) are both sufficiently large. Then we can rewrite (5.86) as

$$\begin{aligned} \begin{array}{lll} \ell +\sigma (\mu _1)+\psi _1(\mu _1)l(m+1)+NL\sqrt{4d_1l}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le \ell +\sigma (\mu _2)+ml\psi _1(\mu _2)+3\pi /\gamma -NL\sqrt{4d_1l}, \end{array} \end{aligned}$$
(5.87)

that is,

$$\begin{aligned} \begin{array}{lll} (t_0^*+l(m+1))\left[ \psi _1(\mu _1)+\frac{\ell +\sigma (\mu _1)}{l(m+1)}+\frac{NL\sqrt{4d_1}}{(m+1)\sqrt{l}}\right] \frac{l(m+1)}{t_0^*+l(m+1)}\\ \\ \ \ \ \ \ \ \ \ \ \le x\le (t_0^*+l(m+1))\left[ \frac{m}{m+1}\psi _1(\mu _2)+\frac{\ell +\sigma (\mu _2)+3\pi /\gamma }{l(m+1)}-\frac{NL\sqrt{4d_1}}{(m+1)\sqrt{l}}\right] \frac{l(m+1)}{t_0^*+l(m+1)}. \end{array} \end{aligned}$$
(5.88)

Now for any given \(\varepsilon \) with \(0<\varepsilon <(c_{1,1}^*(\infty )-c-\varepsilon ^{(1)})/2\), choose \(\epsilon \) sufficiently small such that \(\epsilon <\varepsilon /3\). Then there exist \(l_0\) and \(m_0\) sufficiently large such that for \(m>m_0,\,\,l>l_0\) and \(t=t_0^*+l(m+1)>t_2\),

$$\begin{aligned}&(t_0^*+l(m+1))\left[ \psi _1(\mu _1)+\frac{\ell +\sigma (\mu _1)}{l(m+1)}+\frac{NL\sqrt{4d_1}}{(m+1)\sqrt{l}}\right] \frac{l(m+1)}{t_0^*+l(m+1)}\\&\quad<t(\psi _1(\mu _1)+\epsilon )=t(c+\varepsilon ^{(1)}+\epsilon +\epsilon )\\&\quad <t(c+\varepsilon ^{(1)}+\varepsilon ) \end{aligned}$$

and

$$\begin{aligned}&(t_0^*+l(m+1))\left[ \frac{m}{m+1}\psi _1(\mu _2)+\frac{\ell +\sigma (\mu _2)+3\pi /\gamma }{l(m+1)}-\frac{NL\sqrt{4d_1}}{(m+1)\sqrt{l}}\right] \frac{l(m+1)}{t_0^*+l(m+1)}\\&\quad>t(\psi _1(\mu _2)-\epsilon )=t(c_{1,1}^*(\infty )-2\epsilon -\epsilon )\\&\quad >t(c_{1,1}^*(\infty )-\varepsilon ). \end{aligned}$$

Let \(t_3=t_0^*+l_0(m_0+1)\). If \(t>t_3\), then \(t(c+\varepsilon ^{(1)}+\varepsilon )\le x\le t(c_{1,1}^*(\infty )-\varepsilon )\) implies that (5.86) holds. Thus, by (5.73) and (5.85), we obtain that

$$\begin{aligned}&\lim _{t\rightarrow \infty }\left[ \inf _{t(c+\varepsilon ^{(1)}+\varepsilon )\le x\le t(c_{1,1}^*(\infty )-\varepsilon )}u_1^{(1)}(t,x,\phi )\right] \nonumber \\&\quad \ge r^{(1)}(\infty )-\left( 1+\mu _{1,1}^*(\infty )+\frac{\beta \rho }{1-\beta \epsilon }\right) \epsilon . \end{aligned}$$
(5.89)

Because \(\epsilon \) can be arbitrarily small and (5.89), we have actually shown that

$$\begin{aligned} \lim _{t\rightarrow \infty }\left[ \inf _{t(c+\varepsilon ^{(1)}+\varepsilon )\le x\le t(c_{1,1}^*(\infty )-\varepsilon )}u_1^{(1)}(t,x,\phi )\right] \ge r^{(1)}(\infty ). \end{aligned}$$
(5.90)

Since \(\varepsilon ^{(1)}>0\) is arbitrary, we have actually shown that for every \(\varepsilon \) with \(0<\varepsilon <(c_1^*(\infty )-c)/2\),

$$\begin{aligned} \lim _{t\rightarrow \infty }\left[ \inf _{t(c+\varepsilon )\le x\le t(c_{1}^*(\infty )-\varepsilon )}u_1^{(1)}(t,x,\phi )\right] \ge r(\infty ). \end{aligned}$$
(5.91)

It follows from \(u_1^{(1)}(t,x,\phi )\le r(\infty )\) for all \((t,x)\in [0,+\infty )\times {\mathbb {R}}\) that

$$\begin{aligned} \lim _{t\rightarrow \infty }\left[ \sup _{t(c+\varepsilon )\le x\le t(c_{1}^*(\infty )-\varepsilon )}\left| r(\infty )-u_1^{(1)}(t,x,\phi )\right| \right] =0. \end{aligned}$$
(5.92)

The proof of Lemma 2.5 is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Zou, X. Spatial-Temporal Dynamics of a Diffusive Lotka–Volterra Competition Model with a Shifting Habitat II: Case of Faster Diffuser Being a Weaker Competitor. J Dyn Diff Equat 33, 2091–2132 (2021). https://doi.org/10.1007/s10884-020-09885-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09885-w

Keywords

Mathematics Subject Classification

Navigation