Skip to main content
Log in

Bounded Non-response Solutions with Liouvillean Forced Frequencies for Nonlinear Wave Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, one dimensional nonlinear wave equations

$$\begin{aligned} u_{tt}-u_{xx}+M_{\xi _{2}}u +\varepsilon f(\omega _{1} t, x, u)=0 \end{aligned}$$

with Dirichlet boundery conditions are considered, where \(M_{\xi _{2}}\) is a real Fourier multiplier, f is a real analytic function with \(f(\omega _{1} t, -x, -u)=-f(\omega _{1} t, x, u)\) and the forced frequencies \(\omega _1=(1,\alpha )\) are Liouvillean. We obtain a family of \(C^{\infty }\) smooth, bounded non-response solutions with Liouvillean forced frequencies. This is based on an infinite dimensional KAM theorem with angle-dependent normal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the case \(b=2\), if \(\displaystyle \mathcal {B}(\omega )<\infty \), then \(\beta (\alpha )= 0\)

References

  1. Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for \({\rm SL}(2,\mathbb{R})\) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21(5), 1001–1019 (2011)

    Article  MathSciNet  Google Scholar 

  2. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359(1–2), 471–536 (2014)

    Article  MathSciNet  Google Scholar 

  3. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris 352(7–8), 603–607 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I. Trans. Am. Math. Soc. 370(3), 1823–1865 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. II. Commun. Math. Phys. 353(1), 353–378 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bambusi, D., Berti, M., Magistrelli, E.: Degenerate KAM theory for partial differential equations. J. Differ. Equ. 250(8), 3379–3397 (2011)

    Article  MathSciNet  Google Scholar 

  7. Berti, M., Biasco, L., Procesi, M.: KAM theory for the Hamiltonian derivative wave equation. Ann. Sci. Éc. Norm. Supér. (4) 46(2), 301–373 (2013)

    Article  MathSciNet  Google Scholar 

  8. Berti, M., Biasco, L., Procesi, M.: KAM for reversible derivative wave equations. Arch. Ration. Mech. Anal. 212(3), 905–955 (2014)

    Article  MathSciNet  Google Scholar 

  9. Berti, M., Montalto, R.: Quasi-periodic water waves. J. Fixed Point Theory Appl. 19(1), 129–156 (2017)

    Article  MathSciNet  Google Scholar 

  10. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. (2) 148(2), 363–439 (1998)

    Article  MathSciNet  Google Scholar 

  11. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications, Volume 158 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (2005)

    Google Scholar 

  12. Chang, N., Geng, J., Lou, Z.: Response solutions of forced reversible wave equations with Liouvillean frequencies, preprint (2019)

  13. Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211(2), 497–525 (2000)

    Article  MathSciNet  Google Scholar 

  14. Craig, W., Wayne, C.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math 46(11), 1409–1498 (1993)

    Article  MathSciNet  Google Scholar 

  15. Eliasson, L., Kuksin, S.: KAM for the nonlinear Schrödinger equation. Ann. Math. (2) 172(1), 371–435 (2010)

    Article  MathSciNet  Google Scholar 

  16. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math 226, 5361–5402 (2011)

    Article  MathSciNet  Google Scholar 

  17. Geng, J., You, J.: A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions. J. Differ. Equ. 209(1), 1–56 (2005)

    Article  Google Scholar 

  18. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262(2), 343–372 (2006)

    Article  MathSciNet  Google Scholar 

  19. Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190(1), 209–260 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kappeler, T., Pöschel, J.: KdV & KAM. Springer, Berlin (2003)

    Book  Google Scholar 

  21. Kuksin, S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen. 21(3), 22–37 (1987)

    Article  MathSciNet  Google Scholar 

  22. Kuksin, S.: A KAM-theorem for equations of the Korteweg–de Vries type. Rev. Math. Math. Phys. 10(3), ii+64 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Krikorian, R., Wang, J., You, J., Zhou, Q.: Linearization of quasiperiodically forced circle flow beyond Brjuno condition. Commun. Math. Phys 358(1), 81–100 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies. J. Differ. Equ. 263(7), 3894–3927 (2017)

    Article  MathSciNet  Google Scholar 

  25. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)

    Article  MathSciNet  Google Scholar 

  26. Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(1), 119–148 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Wang, J., You, J.: Boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequency. J. Differ. Equ. 261, 1068–1098 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans. Am. Math. Soc. 369(6), 4251–4274 (2017)

    Article  MathSciNet  Google Scholar 

  29. Wayne, C.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127(3), 479–528 (1990)

    Article  MathSciNet  Google Scholar 

  30. Xu, X., You, J., Zhou, Q.: Quasi-Periodic Solutions of NLS with Liouvillean Frequency (2017). arXiv:1707.04048

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Geng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported by NNSFC Grants 11971012, 11901291 and the Natural Science Foundation of Jiangsu Province of China BK20190395.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, N., Geng, J. & Lou, Z. Bounded Non-response Solutions with Liouvillean Forced Frequencies for Nonlinear Wave Equations. J Dyn Diff Equat 33, 2009–2046 (2021). https://doi.org/10.1007/s10884-020-09882-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09882-z

Keywords

Navigation